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This study examined the effect of varying the approach to obtain the topological derivative and presents the 

numerical results of level set-based topology optimization for a maximally stiff structure problem. To perform a 

topology optimization analysis, the performance function was first defined by the strain energy of the structure. 

The problem was to determine the optimal topology to minimize the performance function under constraint 

conditions, that is, the governing equation and boundary condition. The adjoint variable method was introduced to 

address the minimization problem of the performance function under constraint conditions. The optimal topology 

of the structure was obtained by updating the level-set function, which was achieved by solving the reaction-

diffusion equation. The reaction term of the reaction-diffusion equation was expressed by the topological 

derivative, that is, the gradient of the performance function extended by the adjoint variable and the governing 

equation with respect to the level-set function. In this study, we varied the method to obtain the topological 

derivative in level-set-based topology optimization and performed numerical experiments. The finite element 

method was applied to solve the structural deformation problem. 
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1. Introduction 

 

Since three-dimensional (3D) printers have gained 

prevalence, topology optimization analysis has 

become a focus of attention. Recently, it has been 

reported that the results of topology optimization 

resemble the tissue structure of the bones of living 

organisms1). The present study focuses on level-set-

based topology optimization, that is, a solution 

method alongside density-based topology 

optimization. In some topological optimization 

problems, the induced topological derivative renders 
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it difficult to compute the optimal topology2). The 

topological derivative is specified by the gradient of 

the objective function with respect to the level-set 

function, but the convergence rate of the objective 

function and the accuracy of the optimal solution 

depends on the gradient, that is, the search direction, 

such as the relationship between gradient- and 

Newton-based methods. Therefore, numerical 

experiments of topology optimization are conducted 

in this study to maximize stiffness by varying the 

topological derivative. 

 

 

2. Derivation of stationary condition of 

extended performance function 

 

The equivalent, stress–strain relation, and strain–

displacement relation equations are expressed as Eqs. 

(1)–(3), respectively. These equations are written 

using the summation convention. 

 

𝜎𝑖𝑗,𝑗 = 0                                       (1) 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙𝜖𝑘𝑙                                   (2) 

𝜖𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                              (3) 

 

Here, 𝜎𝑖𝑗 , 𝜖𝑖𝑗 , 𝐷𝑖𝑗𝑘𝑙  and 𝑢𝑖  indicate components of 

stress and strain tensors, the elasticity coefficient 

tensor and the displacement components, 

respectively. If the finite element Galerkin procedure 

is applied to discretize Eqs. (1)–(3), then the finite 

element equation shown in Eq. (4) can be derived3). 

𝒖𝑒  and 𝒇𝑒  denote displacement and external force 

vectors, respectively. 𝑲𝑒  represents the stiffness 

matrix and is calculated using Eq. (5). 𝑩𝑒 and 𝑫𝑒 

indicate the matrix B and the elasticity coefficient 

matrix, respectively. 

 

𝑲𝑒𝒖𝑒 = 𝒇𝑒                                    (4) 

𝑲𝑒 = ∫ 𝑩𝑒
𝑇𝑫𝑒𝑩𝑒𝑑ΩΩ𝑒

                            (5) 

 

Superposing Eq. (4) for all elements, the finite 

element equation for the entire domain is obtained as 

shown in Eq. (6). The boundary condition is defined 

by Eq. (7). Γ1  and Γ2  indicate the Dirichlet and 

Neumann boundaries, respectively, and the hat 

symbol indicates the specified value. 

 

𝑲𝒖 = 𝒇                                       (6) 

{
𝒖 = 𝒖̂ on Γ1
𝒇 = 𝒇̂ on Γ2

                               (7) 

 

Here, we consider the maximally stiff structural 

problem. The maximally stiff structure is a structure 

that minimizes strain energy. Therefore, the 

performance function is defined by the strain energy, 

as shown in Eq. (8). Substituting Eq. (6) into the 

external force vector 𝒇  yields Eq. (8), which is 

represented by the stiffness matrix 𝑲  and 

displacement 𝒖. 

 

𝐽 =
1

2
𝒖𝑇𝒇 =

1

2
𝒖𝑇𝑲𝒖                         (8) 

 

The problem is to determine the optimal topology to 

minimize the performance function 𝐽. To obtain the 

displacement vector, the finite element equation 

shown in Eq. (6) must be solved. Therefore, this is a 

minimization problem with a constraint condition, as 

shown in Eq. (6). Using the adjoint variable method, 

the performance function is extended by the adjoint 

variable vector 𝝀 and finite element equation, Eq. (6), 

and the extended performance function is expressed 

as shown in Eq. (9). Eq. (9) is referred to as the 

Lagrange function. Here, the stiffness matrix 𝑲  is 

expressed by the characteristic function 𝜒, and the 

characteristic function 𝜒 is the function of the level-

set function 𝜙. If the level-set function 𝜙 is positive, 

then the element is in the material domain. If the 

level-set function 𝜙 is negative, then the element is 

in the void domain. If the level-set function 𝜙 is zero, 

then the boundary is between the material and void 

domains. The characteristic function 𝜒 is 1 when the 

element is in the material domain, and 0 when the 

element is in the void domain. The stiffness matrix 𝑲 

is employed when 𝜒 is 1. The stiffness matrix 𝑲 is 

expressed by a zero matrix when 𝜒 is 0. 

 

𝐽∗ =
1

2
(𝒖𝑇𝑲(𝜒(𝜙))𝒖 + 𝝀𝑇(𝑲(𝜒(𝜙))𝒖 − 𝒇))     (9) 

 

To control the complexity of the structure, a 

regularization term is generally included in the 
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Lagrange function in level-set-based topology 

optimization. To derive the discretized regularization 

term, we introduce the steady-state diffusion 

equation shown in Eq. (10). 𝜏  and 𝜙  represent the 

regularization parameter and level-set function, 

respectively. The finite element Galerkin procedure 

is applied to Eq. (10), which results in Eq. (11). 𝑯 

and 𝒒  indicate the diffusion matrix and heat-flux 

vector, respectively. The boundary conditions for Eq. 

(11) are shown in Eq. (12). 

 

𝜏𝜙,𝑖𝑖 = 0                                     (10) 

𝜏𝑯𝝓 = 𝒒                                     (11) 

{
𝝓 = 𝝓̂ on Γ1
𝒒 = 𝒒̂ on Γ2

                             (12) 

 

The regularization term, expressed in Eq. (11) is 

added to the Lagrange function, 𝐽∗ . In addition, a 

volume constraint condition is added to the Lagrange 

function 𝐽∗. Finally, the modified Lagrange function 

𝐾 is defined as shown in Eq. (13). Λ, 𝑣𝑒 , and 𝑉𝑚𝑎𝑥 

indicate the adjoint variable, element volume, and 

target volume, respectively. 𝜒𝑒  represents the 

characteristic function. The value of 𝜒𝑒 is 1when the 

element is in the material domain. However the value 

of 𝜒𝑒 is 0 when the element is in a defect domain, that 

is, a void domain. 𝑚𝑥  refers to the number of 

elements. 

 

𝐽∗∗ = 𝐽∗ +
1

2
𝜏𝝓𝑇𝑯𝝓+ Λ(∑ 𝜒𝑒

𝑚𝑥
𝑒=1 (𝜙)𝑣𝑒 − 𝑉𝑚𝑎𝑥)  (13) 

 

To obtain the stationary condition of the modified 

Lagrange function 𝐽∗∗ , the first variation of the 

modified Lagrange function 𝐽∗∗ is calculated. From 

the gradient of the modified Lagrange function 𝐽∗∗ 

with respect to the adjoint variable vector 𝝀, the finite 

element equation for elastic deformation is obtained 

(see Eq. (14).). From the gradient of the modified 

Lagrange function 𝐽∗∗  with respect to the 

displacement vector 𝒖 , the adjoint equation is 

obtained (see Eq.(15).). Eq. (16) can be obtained 

from Eq. (14), and Eq. (17) can be obtained from Eq. 

(15). Comparing Eqs. (16) and (17), the relation 

equation between the displacement vector and adjoint 

variable vector is derived as shown in Eq. (18). This 

relationship is referred to as the self-adjoint 

relationship. 

 

𝜕𝐽∗∗

𝜕𝝀
= 𝑲(𝜒(𝜙))𝒖 − 𝒇 = 𝟎                       (14) 

𝜕𝐽∗∗

𝜕𝒖
= 𝑲(𝜒(𝜙))𝒖 + 𝝀𝑇𝑲(𝜒(𝜙)) 

= 𝒇 + 𝑲𝑇(𝜒(𝜙))𝝀 = 𝟎                    (15) 

𝑲(𝜒(𝜙))𝒖 = 𝒇                             (16) 

𝑲𝑇(𝜒(𝜙))𝝀 = −𝒇                          (17) 

𝒖 = −𝝀                                    (18) 

 

In addition, the level-set function vector 𝝓 is updated 

by the gradient of the modified Lagrange function 𝐽∗∗ 

with respect to the level-set function vector 𝝓. The 

update of the level-set function is performed using 

the Allen–Cahn equation, which is discretized by the 

finite element method (see Eq. (19)). Here, 𝑴𝑒 

indicates the mass matrix. If 
𝜕𝐽∗∗

𝜕𝝓  is calculated, then 

Eq. (19) can be represented by Eq. (20). Eq. (20) can 

be expressed as Eq. (21), which shows the reaction-

diffusion equation. Parameter 𝐶 is the normalization 

parameter and is expressed as 
𝐶 =

𝑚𝑥

∑ |
𝜕𝐽∗

𝜕𝝓𝑒
|𝑚𝑥

𝑒=1
. This 

parameter is adjusted for each iteration step. 

 

𝑴𝑒
𝜕𝝓𝑒

𝜕𝑡̃
= −𝛼

𝜕𝐽∗∗

𝜕𝝓𝑒
                                  (19) 

𝑴𝑒
𝜕𝝓𝑒

𝜕𝑡̃
= −𝛼 (𝐶

𝜕𝐽∗

𝜕𝝓𝑒
+ τ𝑯𝑒𝝓𝑒 +Λ)              (20) 

𝑴𝑒
𝜕𝝓𝑒

𝜕𝑡̃
+ ατ𝑯𝑒𝝓𝑒 = −(𝐶

𝜕𝐽∗

𝜕𝝓𝑒
+Λ)               (21) 

 

According to a previous study4), 
𝜕𝐽∗

𝜕𝝓𝑒
 is calculated 

using Eq. (22), and 𝑲𝑒
′  is represented by Eq. (23). In 

matrix 𝑲𝑒
′ , matrix 𝑨𝑒 in the two-dimensional plane-

stress state is expressed as Eq. (24). Here, 𝐴1 and 𝐴2 

are calculated using Eq. (25). 

 

𝜕𝐽∗

𝜕𝝓𝑒
= 𝝀𝑒

𝑇𝑲𝑒
′ 𝒖𝑒 = −𝒖𝑒

𝑇𝑲𝑒
′ 𝒖𝑒                       (22) 

𝑲𝑒
′ = ∫ 𝑩𝑒

𝑇𝑨𝑒𝑩𝑒𝑑ΩΩ𝑒
                         (23) 

𝑨𝑒 = [
𝐴1 + 2𝐴2 𝐴1 0
𝐴1 𝐴1 + 2𝐴2 0
0 0 𝐴2

]
                (24) 
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{
𝐴1 = −

3(1−𝜈)(1−14𝜈+15𝜈2)

2(1+𝜈)(7−5𝜈)(1−2𝜈2)
𝐸

𝐴2 = −
15(1−𝜈))

2(1+𝜈)(7−5𝜈)
𝐸                    (25) 

 

𝜕𝐽∗

𝜕𝝓𝑒
 is the topological derivative and is derived for 

each topological-optimization problem. Matrix 𝑲𝑒
′ , 

that is, Eq. (23), is similar to stiffness matrix 𝑲𝑒 

shown in Eq. (5). Therefore, in this study, numerical 

experiments were performed by changing matrix 

𝑲𝑒
′  to stiffness matrix 𝑲𝑒 when computing 

𝜕𝐽∗

𝜕𝝓𝑒
. An 

image diagram of the flow of the level-set-based 

topology optimization is shown in Fig. 1 (see 

reference5) for details.). 

 

 

Fig.1 Image diagram of the flow of level-set-based topology 

optimization. 

 

 

3. Numerical experiments 

 

Numerical experiments for the level-set-based 

topology optimization analysis of the maximally stiff 

structure problem were conducted by varying the 

method to obtain the topological derivative. The 

computational model is shown in Fig. 2, and the 

computational conditions are listed in Table 1. 

Deformation analysis was performed under a two-

dimensional plane-stress state. 

The computational model is illustrated in Fig. 2. The 

aim of this study was to determine the optimal 

topology to minimize the strain energy of the 

structure. In this study, the numerical results were 

compared by changing the method for providing the 

topological derivative. The elasticity coefficient 

matrix 𝑫𝑒 was employed instead of matrix 𝑨𝑒 in the 

calculation of the topological derivative6). Therefore, 

in the setting of matrix 𝑲𝑒
′ , the matrix shown in Eq. 

(23) was employed in case 1, the elasticity coefficient 

matrix 𝑫𝑒  was applied to calculate the matrix 𝑲𝑒
′  

instead of matrix 𝑨𝑒  in case 2, and the numerical 

results were compared. 

The numerical results are as follows. Figs. 3 and 4 

show the variations in the level-set and characteristic 

functions, respectively. The optimal topology is 

expressed using a characteristic function. If the level-

set function is positive, then the characteristic 

function is 1 and the element represents the material 

domain. However, if the level-set function is negative, 

then the characteristic function is zero and the 

element represents the void domain. Based on a 

comparison between cases 1 and 2, although a 

slightly different shape is obtained in the midst of the 

iterative computation, a similar shape is obtained in 

the final iteration.  

 

 

Fig.2 Computational model 

 

Table 1 Computational conditions 

 

   

  

Next iteration

Void

Material

Next iteration
Void

Material

  

   

2.0  

  0   07    

X

Y

1
.0

 m

 
 0
 
 
0
−
2
  

Number of nodes / elements 12800 / 13041

Mesh size [ ] 1.25×10-2

Young’s modulus [ ] 206

Poisson’s ratio 0.3

Virtual time 0.7

Volume reduction rate [ ] 55

Number of steps for volume 

reduction 
100

Design domain for topology 

optimization [ ]
2.0×1.0

C 1.0×10-6

Regularization parameter 3.0×10-4
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Fig. 3 Variation in level-set function. 

 

 

Fig. 4 Variation in characteristic function. 
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4.  Conclusions 

 

In this study, numerical results were obtained by 

changing the method for obtaining the topological 

derivative in level-set-based topology optimization. 

The maximally stiff structural problem was solved 

for the optimization problem, and the cantilever 

beam model was introduced as a numerical example. 

The results showed that even if matrix 𝑨𝑒  in the 

topological derivative can be replaced by an 

elasticity coefficient matrix 𝑫𝑒 , an appropriate 

optimized topology can be obtained.  

Additionally, we developed a new updated 

equation for the design variable7). In the future, we 

aim to apply the new update equation to the present 

method and investigate the effect of the 

convergence rate of the performance function. 
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