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In this study, we introduce and consider a shape optimization process using deep reinforcement learning 

for the drag minimization of an object in an incompressible viscous fluid. Most previous studies on shape 

optimization have used the adjoint variable method. However, it has been demonstrated that shape 

optimization results are dependent on the initial shape and that the final shape is not necessarily the optimal 

shape1). Deep reinforcement learning is a method that learns only from the interactions between an agent 

and its environment. We believe that this is appropriate for optimization where the correct answer is 

unknown. Furthermore, if the shape design variables increase, the behavior patterns that an agent can 

consider will significantly increase. Therefore, we believe that deep learning is more suitable for this 

purpose. 
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1. Introduction 

 

Shape optimization is a method used in product 

shape design. Shape analysis with minimum drag and 

maximum lift is one of the most important design 

processes in shape determination. Shape optimization 

using the adjoint variable method has been applied to 

several optimization problems, such as drag 

minimization problems. However, it has been shown 

that shape optimization results depend on the initial 

shape and that the final shape is not necessarily the 

optimal shape1). However, in recent years, with the 

development of machine learning and computer 

performance, called deep learning, the field of image 

recognition has shown significantly higher 

performance than existing methods in general object 

recognition contests2). Moreover, a method called 

deep Q-learning network (DQN), which learns solely 

from trial and error, has been devised and shown to 

outperform skilled humans in a majority of games3). 

Therefore, this study proposes shape optimization 

with a low dependence on the initial shape. A DQN 

that learns by searching for solutions to problems for 
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which it does not know the answers is expected to 

perform global optimization. 

 

 

2. DQN 

 

2.1 What is DQN? 

In reinforcement learning (RL), a specific 

environment is provided, and the behavior is learned 

such that the reward obtained is maximized. As 

shown in Fig. 1, RL consists of an agent that makes 

behavioral decisions for the model based on the 

policy and an environment that provides rewards. 

The environment outputs rewards and the current 

state as feedback for the agent’s actions. This agent 

learns to perform actions that are expected to be 

maximally rewarding in the current state.  

 RL is commonly used for robot control, Shogi, and 

Go and is often used for dynamic problems that 

depreciate over time. However, other research4),5) 

applied it for optimization in static and time-

invariant problems, such as the optimization of the 

hyperparameters of neural net-works. By receiving 

only the value of the first step as feedback in an 

inherently time-evolving finite element analysis, the 

problem addressed in this study can be considered 

static. Various methods have been proposed for 

action selection, and this study used a DQN, which 

is one such method. The DQN determines actions 

based on the action value function, represented by  

the following equation. This function was further 

modeled using a deep neural network. 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡)             

  + 𝛼{𝑟𝑡 + 𝛾 max
𝑎∈𝐴

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)} (1) 

 

Fig. 1 Conceptual diagram of RL4) 

 

where, learning rate, action-value function, and 

discount rate are denoted by 𝛼 , 𝑄  and 𝛾 (0 <

𝛼, 𝛾 ≤ 1), respectively, and 𝐴 represents the entire 

set of possible actions. The second term of Eq.(1) 

represents the difference between the expected action 

and the current values. 

 

2.2 Reward 

The reward is defined in Eq.(2) as: 

 

𝑟𝑡 = 𝐹𝐷(init) − 𝐹𝐷(𝑡) (2) 

 

Here, the drag forces on the initial shape and the state 

at the 𝑡 epoch are denoted by 𝐹𝐷(init)  and 𝐹𝐷(𝑡) . 

The flow field is an incompressible viscous flow, and 

the governing equations are the Navier-Stokes 

equations in Eq.(3) and the continuity equation in 

Eq.(4). 

 

𝑢𝑖̇ + 𝑢𝑗𝑢𝑖,𝑗 + 𝑝,𝑖 −
1

𝑅𝑒
𝑢𝑖,𝑗𝑗 = 0 on Ω, (3) 

𝑢𝑖,𝑖 = 0 on Ω, (4) 

 

where, flow velocity, pressure, and Reynolds 

number are denoted by 𝑢𝑖[m/s], 𝑝[Pa], and 𝑅𝑒, 

respectively. The computational domain is 

considered as a typical problem, as shown in Fig. 

21). The boundary conditions are as follows: 

𝑢𝑖 = �̂�𝑖 on Γ𝑈, (5) 

𝑇1 = 0,  𝑢2 = 0 on Γ𝑆, (6) 

 

 

Fig. 2 Computational domain and boundary conditions1 
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𝑢𝑖 = 0 on Γ𝐵, (7) 

𝑇𝑖 = 0 on Γ𝐷, (8) 

𝑇𝑖 = {−𝑝𝛿𝑖𝑗 + 𝜇𝑢𝑖,𝑗}𝑛𝑗, (9) 

 

where, the stress and unit normal vectors outward 

from the boundary are denoted as 𝑡𝑖 , 𝑛𝑗 , 

respectively. The fluid force acting on the object is 

denoted by 𝐹𝑖 , where the drag and lift forces are 

denoted as when 𝑖 = 1, 2 , respectively. 𝐹𝑖  is 

obtained using Eq.(10), the integral of 𝑇𝑖  at the 

boundary Γ𝐵.  

𝐹𝑖 = − ∫ 𝑇𝑖
Γ𝐵

𝑑Γ. (10) 

Therefore, the reward in Eq.(2) is the difference, that 

is, a positive reward if the drag force is smaller than 

the initial shape at the 𝑡  epoch. Conversely, if it 

becomes larger than the initial shape at the 𝑡 epoch. 

it represents a negative reward as a penalty. 

 

 

2.3 Network update 

RL defines the value of an action when 𝑠 and 𝑎 

are performed according to 𝜋 as follows: 

 

𝑄𝜋(𝑠, 𝑎) ≔ 𝔼𝑠,𝑎,𝜋[∑ 𝑟𝑡] (11) 

 

where the policy for choosing action is denoted by 𝜋. 

The optimal values are as follows: 

 

𝑄∗(𝑠, 𝑎) ≔ max
𝜋

𝑄𝜋(𝑠, 𝑎) (12) 

 

Instead of using tabular encodings, neural networks 

are used to learn estimates by parameterized 

𝑄(𝑠, 𝑎; 𝜃)  to scale up to large problems such as 

models with many design variables. The following 

formula is used to update the network parameters. 

 

𝜃𝑡+1 ← 𝜃𝑡 + 𝛼 (𝑦𝑡
𝑄 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡)) ∇𝜃𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃𝑡) (13) 

 

where、𝑦𝑡
𝑄

 is target value as follows: 

 

𝑦𝑡
𝑄 = 𝑟𝑡 + 𝛾 max

a
𝑄(𝑠𝑡+1, 𝑎; 𝜃−) (14) 

 

where 𝜃− are the parameters of the target network 

and 𝜃− = 𝜃𝑡. Several important changes in network 

updates improve the learning stability of the DQN3). 

One is that the algorithm is not learned entirely online 

but rather by sampling from the experience buffer. 

The idea is to use a target network with parameters 

𝜃−  copied from the main network. The target 

network updates its parameters at each defined epoch 

(𝜃− ← 𝜃𝑡). This method is called a Double DQN 

(DDQN), which modifies the target value as follows: 

 

𝑦𝑡
𝑄 = 𝑟𝑡 + 𝛾 max

a
𝑄(𝑠𝑡+1, arg max

𝑎
𝑄(𝑠𝑡+1, 𝑎; 𝜃𝑡) ; 𝜃−) (15) 

where the main network selects the action with the 

highest expected action value, as expressed in 

Eq.(15) but adopts the policy 𝜖-greedy method and 

sometimes randomly selects another action. 

 

 

3. Numerical study 

 

Shape optimization using the DQN and adjoint 

variable method was performed based on a previous 

study’s analytical conditions1). The flow field was 

analyzed using FreeFEM++ v4.9, and the free 

software application focused on solving partial 

differential equations using the finite element method. 

The programming language Python 3.8.0 was used to 

implement the DQN, and the machine learning 

framework PyTorch 1.13.1 was used. 

 

 
3.1 Analysis conditions 

Fig. 3 and 4 show the finite element mesh, and 

computational domain, respectively. The parameters 

used in the DQN analysis are listed in Tab. 1. In the 

finite element analysis, the time step width was 

0.03[s], end time step was 2,000[s], and the Reynolds 

number was 100. 
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where, the design variable in the DQN analysis is 

given by the elliptical equation as in Eq.(16). 

 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1 (16) 

 

The action was to increase or decrease 𝑎. To update 

the shape with a constant area, 𝑏 was obtained from 

 

Fig. 3 Finite element mesh1) 

 

Fig. 4 Computational domain1) 

 

 

Tab.1 DQN analysis conditions 

Max epoch - 200 

Max Episode - 100 

Worm up epoch - 10 

Batch size - 5 

Learning rate 𝛼 0.00025 

Adam parameter 1 𝛽1 0.9 

Adam parameter 2 𝛽2 0.999 

Adam parameter 3 𝜖1 1× 10−8 

Epsilon 𝜖2  0.1 

Gamma 𝛾  0.9 

Initial design variable  a, 𝑏 0.5[m] 

Action width - 0.01[m] 

Newton threshold 𝜖3 1 × 10−6 

𝑎 and the area of the initial shape was determined 

using Newton’s method. The Adam optimization 

method, which is a sequential optimization method 

that uses first-order derivatives of the objective 

function with various mod-ifications to the steepest 

descent method, was used. Specifically, this method 

combines RMSprop and mom-entum SGD. Eq.(1) is 

represented by a neural network, in which the second 

term is the difference between the expected action 

value and the current expected value, as follows: 

 

𝐸 =
1

2
∑ (𝑄𝑛(𝑠𝑡 , 𝑎; 𝜃) − 𝑦𝑡

𝑄
)

2𝑁

𝑛=1
(17) 

∇𝐸 ≔
𝜕𝐸

𝜕𝑤
(18) 

 

where, 𝐸 and ∇𝐸 in Eqs.(17) and (18) denote the 

error function and gradient of the error function, 

respectively. By applying Adam to them we obtain: 

 

𝑚𝑖
[𝑡]

= 𝛽1𝑚𝑖
[𝑡−1]

+ (1 − 𝛽1)𝛻𝐸                (19) 

𝑣𝑖
[𝑡]

= 𝛽2𝑣𝑖
[𝑡−1]

+ (1 − 𝛽2)𝛻(𝐸[𝑡])2        (20) 

�̂�𝑖
[𝑡]

=
𝑚𝑖

[𝑡]

(1−𝛽1
𝑡)

                                             (21) 

𝑣𝑖
[𝑡]

=
𝑣𝑖

[𝑡]

(1−𝛽2
𝑡)

                                             (22) 

𝜃𝑖
[𝑡]

= 𝜃𝑖
[𝑡−1]

− 𝛼
�̂�𝑖

[𝑡]

(√�̂�
𝑖
[𝑡]

+𝜖1)

                    (23) 

 

where, 𝑚𝑖
[𝑡]

 in Eq.(19) is the momentum for 

suppressing the ith parameter vibration at 𝑡, 𝑚0 =

0 . 𝛽1  is the decay rate, the hyperparameter that 

determines how much of the past gradient is 

accumulated, and  𝑣𝑖
[𝑡]

 in Eq.(20) denotes the 

accumulation of past gradients for the ith learning 

parameter at time 𝑡. The initial value was zero. The 

ratio of the past gradient to the latest gradient 

accumulated was 𝛽2 ∶ 1 − 𝛽2 . Therefore, past 
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information accumulates exponentially, allowing 

more past information to be largely ignored as the 

epochs progressed, and eliminating the gradient loss 

problem. 

 

3.2 Result 

Fig. 5 shows the transition from the initial to 

convergent solutions during the verification of the 

initial shape, where 𝑎 is the width from the center of 

the ellipse, indicating gradual widening and 

convergence to a width of 2.14 for an initial condition 

of width 0.5. The width of the movement in one 

action was 0.01[m]. Fig. 6 shows the final shapes of 

shape optimization using DQN and the associated 

variable method. 

The adjoint variable method seeks a bullet shape 

with a pointed tip and the rounded rear. The pressure 

distributions after 2,000 steps for the two geometries 

are shown in Fig. 7. The drag force history for 2,000 

steps is shown in Fig. 8. The final shape of the 

adjoining variable method appears to be a backward 

vortex, and the flow appears to peel off around the 

middle of the object. Pressure resistance is dominant 

in vortex-generating objects. Contrarily, there were 

no noticeable eddies in the DQN shape, suggesting 

that almost no exfoliation occurred. Therefore, we 

believe that the frictional drag was dominant, but the 

frictional drag was not that large because of the  

 

Fig. 5 Transition from initial to convergent 

smooth shape. 

Immediately after the inflow, the drag was large, 

with drags of 39.88 and 29.67 for the DQN and 

adjoint variable methods at the first step, respectively. 

Fig. 8 shows the drag after the second step. The 

cumulative values of the square of the drag for Steps 

1 to 2,000 were 26.42 and 50.46 for the DQN and 

adjoint variable methods, respectively. It is difficult 

to represent the complexity of the geometry in this 

analysis because of the small number of design 

 

Fig. 6 Final shape of DQN (top) and  

adjoint variable method (bottom) 
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Fig. 7 Pressure distribution for DQN (top) and 

adjoint variable method (bottom) 

variables in the DQN. However, we believe that 

resetting the shape and repeating the search for each 

episode is less likely to result in a locally optimal 

solution. We also believe that a larger step width and 

wider search compared with conventional analysis 

conditions contributed to the success of the search. 

 

Fig. 8 Drag history 

 

 

4. Conclusion 

 

In this study, we proposed a shape optimization 

method using a DQN and compared it with a 

conventional shape optimization method that uses 

adjoint variable method. Although the number of 

design variables was different and therefore, not 

completely comparable, we believe that the DQN is 

useful for shape optimization of models with fe w 

design variables based on drag forces. In the future, 

we intend to verify this using additional design 

variables. 
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