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In this paper, Green and Zerna’s complex potential approach”, which is the theory of isothermal
anisotropic elasticity, is extended to the anisotropic thermoelasticity. First, based on the approach,
the stress and the displacement components are expressed by the complex potential functions and
the thermal potential function. Special attention is paid to the transformation formulas of the
complex potentials and the physical constants attendant on the translation and rotation of the
rectangular coordinate systems. These formulas are correspond to the case of Muskhelishvili’s
transformation formulas® for the isotropic, isothermal body. These will be very convenient to
construct the three complex potentials in the case of using multiple rectangular coordinates for the
various boundary value problems of anisotropic thermoelasticity. Finally, a few fundamental

solutions are given by the complex potential representation obtained.
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1. Introduction

In the mid-nineteenth century, Muskhe-
lishvili” considerably extended the complex
variable method of elasticity by adding the
idea of Cauchy integrals and conformal
mapping, and solved a large number of
specific problems summarized in his very
famous book”. It can be said that he lastly
systematized the two dimensional, isotropic
complex variable method of elasticity. One of
the advantages of the method is that it is of
very convenience in treatment of stress
singularities in elastic solids, and was applied
to the various fracture mechanics analyses for
isotropic bodies. Subsequently, the method
was extended by Lekhnitukii®, Eshelby et. al?,

and Stroh® to the anisotropic elastic body,
independently. They are well known as
Lekhnitskii formalism and Eshelby-Stroh
formalism, respectively. = Moreover, these
formalisms were extended to the anisotropic

thermoelasticity®”

10),11)

, the piezoelectric elastic
solids and others'?.

On the other hand, there is the Green and
Zerna formalism" as an alternative formalism,
which was independently developed by
connecting tensor analyses and complex
variables. Based on this formalism, the author
has studied on the fracture analyses associated
with singular stress fields such as crack

problems'”, flat inclusion problems'® and
stiffener problems'>. This formalism is useful

for construction of complex potential functions
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in the case of employing the multiple
coordinate systems, similar to the trans-
formation formulas® of Muskhelishvili’s
complex potentials.

In the present paper, the basic analyses are
made for extending the previous fracture
analyses'>"?
the anisotropic thermoelastic body. In order to
apply the method directly to the anisotropic
thermoelastic body, first of all we derived the
basic equations of the body in terms of
complex variables, and found the trans-
formation formulas of the complex potential
functions, and the physical constants and the
induced constants. Finally, although well

of anisotropic isothermal body to

known simple solutions, we derived the
solutions of the temperature dislocation and
the concentrated heat source in an infinite
thermoelastic body with our complex

potentials.

2. Basic Equations

First, complex potential representations of
basic equations of two dimensional, aniso-
tropic thermo- elasticity are derived.

In the absence of body forces, stress
components t* can be expressed in terms of
Airy’s stress function U in general coordinates
by the formula

af _ Lyo.pB
P =gl U|py (D

where ¢ is € -system of order two and
U‘aB denotes covariant differentiation of the
stress function U.
indices denote 1 or 2. The strain tensor y*°
is related to the displacement tensor v* as

From now on, Greek

follows:

) @)

1
Yaﬁ L aakvﬁ‘ +amvu
2 3

where a*® is a metric tensor. The
generalized Hooke’s law by referring the stress

and strain to the two-dimensional general
coordinates is expressed by the general form

v =FPt™ 4+ GUT 3)

where F){lf denotes the elastic constant and

G corresponds to the thermal expansion
coefficient at temperature T. The equation of
conduction of heat in the steady state is given

by
M*T| =0 (4)

where M* is the conductivity coefficient of
the medium. Also, the heat flux f* is given
by

£ = _KaﬁT‘B (5)

where «® is the thermal conductivity
Equations (1)-(5) above are the
basic equations of homogeneous anisotropic,
thermoelastic bodies.

constant.

3. Representation of the governing
equations in terms of complex coordinates

If we denote covariant and contravariant
base vectors in the complex coordinate systems
by a_and a” respectively, the position vector
r may be written as

r=z%_=1z_a“ (6)

where the complex coordinates (z,Z) are
introduced by the formulas

Z:x-{—iy,izx—iy (7)

and noting that x=x, y=x,, z'=z 7°=%
and 7} =x, by tensor transformations. We
now restrict our attention to bodies which are
elastically symmetrical with respect to the
plane (x,,x,) and assume the state of plane
strain (Appendix A).
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The tensors p«¢, T** and F*which can be
expressed by the displacement u®, the stress
t*®, and the heat flux f“ in the rectangular
coordinates  x_, are introduced as follows:

W%M (®)
a i
P (10)

From Eqgs.(8),(9) and (10), we have the
following expressions, which need the later
analyses:

T? =t"+t¥ =t,,+1,=0 =0, +0,, (11)
T =t —t, +2it, =P =0, -0, +2ic,, (12)
D'=u, +iu,=D=u, +iu, (13)
F' =f, +if, =F=f, +if, (14)

If we remember that u®=u,, t*=t, in the
rectangular coordinates and hereafter these
properties may be used without notice. In
Egs.(11)-(14), we denoted t,,u, and f,, by
G,., U f,, since there is no risk of

XX 2 X 2

confusion in two dimensional elasticity. To
develop the theory with complex variable
coordinates, it is more convenient to introduce
the tensors Ff‘f,G"“3 and M“ referred to
complex coordinates, and they are introduced,
respectively, as follows:

ap _ oy OZ" oz" 0z° 07" (15)
= o o o o

a i

a i

where sgfq, a®, «® are the elastic constant,

the thermal expansion coefficient and the heat
conductivity in the rectangular coordinates,
From Eq.(15), and taking
account of a elastically symmetrical plane

respectively.

stated above, we see the elastic coefficient s
reduced from 21 to the 13 independent
coefficients:

SIL =S¥ =(s|} +s2 —4s)2 — 25} +dis|) —4is))) /4 =
=(S); + S5, —Ses — 28, + 215, —2i8,¢) /4 =S,

Sh =81 =S, =(8;, =Sy, +18,, +18,,) /4

SH :SZ =S, =(8); +8, +85 —25,,) /4

Sg =S, =(8,+8y +2s,)/4

(18)

and
Sy =S, =S =87 =5, (19)

where the generalized Hooke’s law in
engineering representation are given as
follows:

€] =€, =80 8,0, +8,,0, +a,T
(20)

€ =8y = 810, T830,,+8)0,,+ a,T

€y =€, =8,,0,, +8,,0,, +840, +0,T

From Eq.(16) and (17), after similar
manipulations, we obtain

H, =0, —a, +2ia, =Hy,, H,=a,, +a, =H,

21)

Ky =K, — Ky +21K12 =K,,, K, =k, +x5 =K,

(22)

where we also used the fact that there are no

difference  between the covariant and
contravariant tensor in rectangular coordinates.
From Eqgs.(18) to (21), it should be noted that
the very simple formulas for rotation of the
coordinates hold, which will be shown later.
The metric tensor which corresponds to the
complex coordinates Eq.(6) has constant
components SO that the
differentiation in this coordinate system reduce
to partial differentiation. Thus from Eq.(1) we

obtain

covariant
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o*U P 0°U (23)

=QP=-d4-—
Tu ooz’ 0207

With Egs.(2) and (3), these give (Appendix B)

S,®+S,d+25,0= 2%]3 +H,T (24)
VA

SO +S,D +25,0 =286—D+H22T (25)
Z

S,®+S,0+28,0= DD, H,T (20)
0z 0z

Eliminating D from Eq.(24)~(26) gives

o'uU o'U 0'U — 90U
S, ———4S, ——+2(S, +S —-48 +
"ozt 02’07 (S5 4)822622 ? 0207°
o'U 1 o°T o°T o°T
+S =——(H, —-2H, —+H, —
"oz 4( " oz2 o0z 7 822)
(27)

Moreover the heat conduction equation of two
dimensional anisotropic medium given by
Egs.(4) and (17) are obtained by using the
Green and Zerna’s formulation as follows:

2 2 2
116—E+2K126T+K oT
oz

K _
0z0z 2 07°

=0 (28)

4. General solution
The solution of Eq.(28) is of the form:
T(x,y)=6(z;) +0(z;) (29)

where 0(z,) is an analytic function and z, is
given by

Z,=2+Y,Z (30)

The characteristic value vy, with vy <1 in
Eq.(30) can be obtained from

K, (Y3)2 +2K 7, + K =0 (31)

The general solution of Eq.(27) can be taken in
the form:

U=U,+9¢, (32)

where U, 1is a general solution of the
homogeneous equation of Eq.(27) and is given
by

U, =Q(z))+Q(z)) +o(z,) +o(z,)  (33)

with

z,=2+Y,Z, Z,=z+7Y,Z (34)
and y;(j=12) isaroot of the equation:
St —48,77 +2(S;+8,)y* -S4y +8, =0 (35)

and the roots can be selected to be these roots
with modulus less than unity so that

‘Yl V2‘<1

b

On the other hand, a particular solution ¢ can
be put as

¢, = A[[0,(z,)dz,dz, +A[[6,(z,)dz,dz,  (36)

in which A is a complex constant. By
substituting Eq.(33) and (36) into Eq.(27) and
comparing the coefficient of both sides of the
equation, we get

__H(yy) (37)

O AS(y,)
where

H(y,)=H, _2H1273+H22V32 (38)
S(y;) = S1Y§ —452“{§ +2(8, +S4)Y§ =S,v;5+S,

Thus the general solution of Eq.(27) has in the
form:

2U =Re[Q(z,) + 0(2,) + y(25)] (39)

where an analytic function (z,) is

introduced as follows:

__H(Ys) 40
w(z,)= 4S(y3)jje(z3)dz3dz3 (40)

Therefore, by substituting Eq.(39) into Eq.(23),
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11 22

and by exchanging t'", ¢ and <" with

6., 0, and o ,we obtain
o, +o, = il Q")+ Q(§)+
Y 1> ‘(m
ey o D
2 — o 2
(1+ 2) (1 )
4y,
(1+ 3)2 —— () + s ,)2 v(&s)

LTS P o o
+

G, —0, +2ic, =

(I+v) (I+7) (42)
_ 4Y2 " _ 4 ME N

T+r.) o'(C,) (7. '(C,)
Ay 4

(1+Y3)2 v'(&;) (1_’_?3)2 v'(&,)

and for the temperature distribution, from
Eq.(29)

T(x,y) =0(C,) +0(Cs) (43)

where the three complex variables ¢, (i=1,2,3)
were introduced as the affine transformation as
follows:

¢, =2 =123 (44)
1+vy,

j

Similarly the displacement components u,
and u, are obtained by substituting Eq.(39)
into Eq.(24) and integrating as follows:

u +iu = '(€)+
- (45)
b2 )+ )+
1+ Y,
+
1+
where

4H115(Yj) . (46)
-—— (G=123
yH(Y)) . )

J J

8, ==2(Syv; =28y, +S)/v,

4H,,S(y;) . 47)
——, (j=123
H ) G )

i

p; = =2(8; - 28271' + S]ﬁ) -

and where we must exclude the second term in
the right hand sides of Eqs.(46) and (47) when

j=1 and j=2. Moreover the resultant force P
exerted across a part AB on the curve of the
body, and the moment M about x; axis which
perpendicular to the (x,y) plane, are found
according to Green and Zerna" in the forms :

1

P=X+iY=2i‘l[f=2i " Q)+ 1% Qg+
0z IT+y I+7v,

() oG+
l+y,

W(Cs) — \V(Q3):|
I+, +7;

(48)

M—Za—U+76—U—U—
15/4 0z

“lboeH+g @) -ae)-a@)+
18,0/(8,)+ E, 0'(C,) - 0'(C,)—0'(Cy)+ (49
T ER R BT R

where X and Y are the components of resultant
forces in the direction of x and y axes,
respectively.  Thus, the basic equations of
complex potential representation for two
dimensional thermoelasticity of anisotropic
media are given by Eqs.(41),(42),(43) and (45).
It should be noted that the rigid body
displacements and rotation are neglected in
those equations.

5. Rectangular coordinate transfor-
mations of the complex potential
functions and physical constants

5.1 Translation

Now, let us consider how the complex
functions corresponding to a given stress state
of a body change under the translation from
one system of rectangular coordinates to
another, as shown in Fig.1. When the new
system t(=x+iy)is translated from the old

one z,(=x,+iy,) by a distancez (=x,,+1iy,,),

by the condition of stress components are not
altered by a translation, the transformation
relation between the complex potentials
Q). o, and y(g,) related to old

coordinates (x,,y,) and the new complex

Q). o, and (@, are
obtained as follows:

potentials
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Q;(Cl) :Q,(Cl _CIO)
0;(5,) = (5, ) (50)
vi(C)=v'(C, -Cy)

where

yi '\ y

Zyo
X1

O,

Fig.1 Translation of rectangular coordinates

(;j:1+j » 2;=z+7Z,(j=123) (51
Vi
Zy,+Y.Z . .
jo ZM’ 2,y =Xy +1y,9, (j=12,3) (52)
I+y;

5.2 Rotation

Next consider the effect of rotating the
axes O leaving the origin fixed as shown in
Fig.2. We denote the old coordinate systems as
(x,, y,)and the new systems(x, y) whose the
direction cosines relative to the old system is
¢;» (i,j=1,2), then the relation between the new
conductivity coefficients «, of the new
system (x,y) and «, of the old system

(X, y,) Is

Kl = CorCp s (0B, 1,5 =1,2) (53)
where «_ is the conductivity coefficient in

Yi A

X1

0.,0

Fig.2 Rotation of rectangular coordinates

the old system (x,,y,) and ¢, is a direction
cosine given by

cos® sin® 0
c,, =|—sin® cos® 0 (54)

0 0 1

The complex representation related to the
conductivity coefficients formulas are obtained
by wusing Eq.(53) and (54) as follows
(Appendix C):

K/, =% —«) +2ik}, = (1, — 1, +2iK,)e " =
:Klleizie,ng :illl :K2Ze—2ie

Ki, =}, +K5 =%, +K,, =K,,, (invariant )

Y3 =75

-2i0

(55)

It should be noted that K;, =K, is

invariant for an arbitrary angle 0. Similarly,
the transformation formulas of the thermal
expansion coefficients o, (i,j=1,2) are found

in similar form of Eq.(55):

ro_ ! ' sl : -2i0 __
H11 _all_a22+21a12 _(all_a22+21a12)e -

_ -2i0 T -2i0
=H, e, Hy, =H), =H,¢e

’ — ’ r — — : :
H|, =a;, +a), =0o,, +a,, =H,,, (invariant)

(56)

The forth-order tensor of elastic constants Siik
are transformed by

Siki = CimCnCioCpS (57)

im ™ jn £p " mnop

Similar to the derivation of Eqgs.(55) and (56),
the following formulas for the elastic
constants and the characteristic values
Y,, v,are obtained,

(S3) =S5,
Vo = Vo€ (59)

(51 =815, (S =She™, (5= s}ée”} (58)

where we denote elastic constants in the new
coordinates (x,y) with a prime, and without
that in the old coordinates (x1,y1,) (Appendix
D). Moreover for the constants in the basic



Alternative Complex Representations in Anisotropic Thermoelastic Media and Related Properties

equations of Eqs.(41)~(45), it is verified that
the following expressions hold (Appendix E):

8 =587 (i=1,2)
pl=p,  (i=1, 2) (invariant)}  (60)
vi=yve ™ (i=1,2,3)

where the prime denotes the quantities related
to a new system. Also, for the complex
potential functions, if the new system
t(=x+1y) is rotated with respect to the old
one z,(=x,+1y,) by 0, using Egs.(55)-(60),
we obtain

1+7,)

Q;'«;l):[liw e Q') (61)
147, ) i

@;’(gz)z(liz'z] 6’2‘ Q”(nz) (62)

1+7,)
wi’(C;){l”fje”\v”(m) (63)
+3

where the complex potentials in the right hand
side of Egs.(61)-(63) are new potentials with
respect to the new systems, and

t+yit
1+y!

J

, (j=1,2,3), t=xtiy (64)

n; =

t+y't )
< ={ hath }njele, (j=12.3) (65)
1+v!

]

By using these basic equations and trans-

formation  formulas, complex potential

functions in various fracture mechanics
analyses of anisotropic thermoelasticity
problems will be constructed effectively in
connection with the singular stress fields. For
insulated cracks in

example, arbitrary

directions in anisotropic media under
stationary uniform heat flow can be simulated

distributions  of  edge
)

by  continuous
dislocations as given in the early papers'®, and
a system of singular integral equations of

Cauchy type may be obtained.

Equations (50), (61), (62) and (63)
correspond to the isotropic and isothermal
elasticity formula obtained by Mushke-
lishvili”, and the anisotropic, isothermal case
of Stroh formalism was considered by Ting'”.
The above transformation formulas obtained
are summarized in the Table 1 together with
the isotropic, thermal complex potential
functions. In addition, the case of translation
and rotation occurring simultaneously, is also

shown in the Table 1.

6. Fundamental solutions

6.1 Uniform heat flux q, at infinity with an
angle B from the positive direction of the x
axis.

As shown in Fig.3, we seek the complex
potentials in a case of uniform heat flux qo at
infinity. The Fourier’s law of heat conduction
in anisotropic medium can be written by using
Egs.(5) and (10) as follows:

F=f'+if? =f _+if =q, cosp+iq, sinp =

:_KH%T_KH gzi[Ke(Cs)_Ke(Cﬂ] (66)
Z 0z
where
1 .
K= {1K21(1+Y3)_K22(1_73)} (67)
I+,

and K,; and K, are the induced conductivity
constants given by Eq.(21). Substituting
Eq.(43) into Eq.(66),we obtain

Clo(l"”/s)(KzeiB _Kle_ip)
K1K1 _Ksz

0(C,) = 5, +T, (68)

where
K, =K, +7:Kp,, K, =K, +"/3K11 (69)

The function '({,) will be obtained by the
relation Eq.(40). In Eq.(68), the constant T,
denotes the constant temperature rise or fall of
the medium. The other two complex potentials
Q'(¢,) and ®'(¢,) will become zero.
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Jo

0 X
v

Fig.3 Uniform heat flux qo at infinity
with angle B from the positive x axis.

6.2 A single temperature dislocation in an
infinite anisotropic medium

We assume that the dislocation is located at
the origin of the rectangular coordinates (X,y).
The potential will be constructed by the
following conditions (a) and (b):

(a) The magnitude of temperature dislocation

To arises when (¢, goes round the

dislocation along an closed curve C,

j dT =T, (70)

(b) The magnitude of total heat flow is zero
when ¢, goes round the center of

temperature dislocation along an arbitrary
closed curve C,

Ifnds=0 (71)
C

where f, is a heat flux in the normal direction n
of the curve C. The temperature potentials
which satisfy the Eqgs.(70) and (71)
simultaneously, are given by using Eqs.(43)
and (66), as follows:

iT,K
N 72
0 2n(K+K)10gC3 (72)

The complex potentials Q'(,) and o'(C,)
corresponding to the temperature potential
Eq.(72) can be obtained by the conditions: (c)
the displacement dislocation around the
temperature dislocation is zero, and (d) the
total resultant force around the temperature

dislocation 1s also =zero. The result 1is

Q') =0(C,)=0.

6.3 A single concentrated heat source in a
anisotropic infinite medium

We assume that the line heat source with a
total quantity of heat Q per unit length is
located at the origin of the rectangular
coordinates (X, y). In this case the temperature
potential function 9(¢,) can be derived by the
following conditions:

(a) The line integral of heat flux around the
center of line heat source becomes the total
heat flux Q.

(b) The magnitude of temperature dislocation
is zero when ¢, goes round the line heat
source along an arbitrary closed curve C.

The temperature potential function @(g,) is

obtained by using the condition (a) and (b)

simultaneously, as follows:

Q
€)= o8 (73)
or from Eq.(40),

" :_((Yz)(1+73)2 _ (I+7v5) (74)
v'(Cs) 45(1,) —0(C,) > C;logg,
where

C. = Q( +v,)H(y,) (75)

P An(K +K)S(y,)

The complex potentials o'c,) and '(¢,)
corresponding to the temperature potential
0(¢,) can be obtained by the conditions: (c)
the displacement dislocation around the
concentrated heat is zero, and (d) the total
resultant force around the concentrated heat
source is zero. Under these conditions, we
assume the complex potential functions in the
forms with the constants C; and C,:

aey--eg e, 06
m'(gz)z_(l—i_zy»czgz log ¢, (77)
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C, logg, (78)

ey d+73)
v'(&,)= 5

where C; and C, are complex constants and Cj is
given by Eq.(75). We see that the complex
potentials (76), (77) and (78) will satisfy the
conditions (¢) and (d), if the constants C; and C,
satisfy the following equations, which are derived
from Eqs.(45) and (48) using above conditions.

8,C, —p,C, +8,C, —p,C, = -0,C;4 +P363
5,C,-p,C, +6,C, —p,C, =-8,C, +p,C, (79)

e _61 +7,C, -C, =C; +7,C;4

where &, p;(=1, 2, 3) are given by Eqs.(46) and
(47), respectively. From Eq.(79), C,,C,,C, and
C,will be determined completely.

7. Conclusion

Basic analyses on the anisotropic thermo-
elasticity theory have been made on the basis of the
Green and Zerna’s complex variable approach".
First, based on the approach, the stress and
displacement components were expressed by the
potentials Special
attention was paid to the transformation formulas of

three complex functions.
the complex potentials and the physical constants
attendant on the coordinate translation and rotation
of the rectangular coordinate systems. These
formulas correspond to the case of Muskhelishvili’s
transformation formulas” for the isothermal,
isotropic body. These will be very convenient to
construct the three complex potentials in the case of
using multiple rectangular coordinates for the
various boundary value problems of anisotropic
thermoelasticity.  Finally, although well known
simple solutions, the fundamental solutions were

given by the complex potential obtained.

Acknowledgement : The author wishes to thank
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Appendix

A
In this case, we must replace the elastic constant s;;
for the plane stress with the plane strain Eij as

S; =8i —Si383 /83 (al)

where the elastic constants s;;is given by Eq.(20).

B
From Egs.(2) and (3),
FaB A apr _ 1 ok . B Br . a (32)
Wt +GPT==a v‘ +a™v
2 A A
where a®® is a metric tensor in two dimension and

exchanging into the complex coordinates,
FP —»8% v* 5D, G »>H® by Eqs.(8)~(9)

J-

BT + G*T = ST + H*T = l(aaxDB‘ P Do
2 A

Loy o)

(a3)
We put t'=T"t?"=T"1* =T and a=
=B =1 in Eq.(a2), we obtain
SIT'! 4 ST + ST + ST + H'T =
(a4)

1
:7a11V1‘ +a12V1‘ +a”v1‘ +312V1‘
2 1 2 1 12

where property of symmetry of strain tensor and
Egs.(8), (9), (11), (12) were used. Thus, from
Eq.(a3), using Eq.(18), (19) and a" =0 (i=1,2),
a?=2,a”=1/2, we obtain

S @ +SLd+2S10++H"T= (5)

a

=2v| +H"T=2D), =2 T
Z

The other equations (25) and (26) will be derived
similar procedure to Eq.(a4).

C

The new conductivity constant K;j after rotation

of the old coordinates are given by Eq.(53) as
follows:

! —_— f—
K11 - ClrclsKrs -

=CC Ky +C1C Ky T €150 1Ky +CpC Ky =

=cos’ Oxk,, +cos0sin Ok, +cosOsin Ok, +
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+sin’ Ok,, =K,, cos’ 0+ 1, sin 20 + «,, sin” O
(a6)

Similarly,

K =—K,,8in20/2+k,, cos20 + «,, sin260/2 (a7)
K, =K, sin” 0—K,,sin20+1%,,cos’ O  (ad)

Therefore, substituting Egs.(a6), (a7) and (a8) into
Eq.(21) corresponding the new coordinate systems,
the results are

Kj, =

+2K,, sin 20 — x,, (cos” O —sin” 0) — ik, sin 20 +

’ ’ o — 2 c a2
Kj, — K5, +2ik}, =K, (cos” 0 —sin~ 0) +

+2ic0s20 +1x,, sin 20 =

_ . o _ _2i0 ' _2i0
_(Kn —Kp "'2“(12)e =K, e, K| =K;¢e

(29)
Similarly,
K, =K,,e*, K|, =K,, (invariant) (al0)
and
y/_ye—zie (all)
D

Using Eq.(57), the new elastic constants s
(i,j=1,2,6) after rotation O of the old coordinates

elastic constants S

are given by the old

(i, j=1,2,6) as follows” if we write only s/,

' _ 4 - 4
S;; =8,,€08 045,510 0+ (2s,, +5) %

(al2)

xsin”20/2 ++(s,, cos’ 0 +s° sin” 0)sin 20

Substituting s} (1,j=1,2,6) into Eq.(18) and (19),
we obtain after some manipulations
Sii' =85 =8 =(s], +8), +54 —2s],)/4=

=(S,, +S, +S¢ —25,,)/4=S,, (invariant)

(al3)

The other expressions of Eqs.(58) and (59) will be
found from the similar manner.

E
By using Eqs.(al3) and the related formulas®, we
obtain from Eq.(46) as follows:

B, = 2(Suy ~ 257, +8) /1, ~ 4H, S 1) V() =
= —2(83}’? - 2Sijsl) / Y; e _4'1_1118(}’]')6_2].e /YjH(Yj) =
e (al4)

Similarly, the other transformation formulas of
the induced constants will be obtained.
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