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1. Introduction 
 

In the mid-nineteenth century, Muskhe-
lishvili2) considerably extended the complex 
variable method of elasticity by adding the 
idea of Cauchy integrals and conformal 
mapping, and solved a large number of 
specific problems summarized in his very 
famous book2). It can be said that he lastly 
systematized the two dimensional, isotropic 
complex variable method of elasticity. One of 
the advantages of the method is that it is of 
very convenience in treatment of stress 
singularities in elastic solids, and was applied 
to the various fracture mechanics analyses for 
isotropic bodies. Subsequently, the method 
was extended by Lekhnitukii3), Eshelby et. al4),  

 
and Stroh5) to the anisotropic elastic body, 
independently. They are well known as 
Lekhnitskii formalism and Eshelby-Stroh
formalism, respectively. Moreover, these 
formalisms were extended to the anisotropic 
thermoelasticity6)-9), the piezoelectric elastic 
solids10),11)  and others12).  
  On the other hand, there is the Green and 
Zerna formalism1) as an alternative formalism, 
which was independently developed by 
connecting tensor analyses and complex 
variables. Based on this formalism, the author 
has studied on the fracture analyses associated 
with singular stress fields such as crack 
problems13), flat inclusion problems14) and 
stiffener problems15). This formalism is useful 
for construction of complex potential functions 
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in the case of employing the multiple 
coordinate systems, similar to the trans- 
formation formulas2) of Muskhelishvili’s 
complex potentials. 
  In the present paper, the basic analyses are 
made for extending the previous fracture 
analyses13)-15) of anisotropic isothermal body to 
the anisotropic thermoelastic body. In order to 
apply the method directly to the anisotropic 
thermoelastic body, first of all we derived the 
basic equations of the body in terms of 
complex variables, and found the trans- 
formation formulas of the complex potential 
functions, and the physical constants and the 
induced constants. Finally, although well 
known simple solutions, we derived the 
solutions of the temperature dislocation and 
the concentrated heat source in an infinite 
thermoelastic body with our complex 
potentials. 
 
 
2. Basic Equations 
 
  First, complex potential representations of 
basic equations of two dimensional, aniso- 
tropic thermo- elasticity are derived. 
  In the absence of body forces, stress 
components  can be expressed in terms of 
Airy’s stress function U in general coordinates 
by the formula 
 

U          (1) 

 
where   is -system of order two and 
U  denotes covariant differentiation of the 
stress function U.  From now on, Greek 
indices denote 1 or 2.  The strain tensor  
is related to the displacement tensor v  as 
follows: 
 

vava
2
1          (2) 

 
where a  is a metric tensor.  The 
generalized Hooke’s law by referring the stress  

and strain to the two-dimensional general 
coordinates is expressed by the general form 
 

TGF            (3) 

 
where F  denotes the elastic constant and 

G  corresponds to the thermal expansion 
coefficient at temperature T.  The equation of 
conduction of heat in the steady state is given 
by 
 

0TM             (4) 

 
where M  is the conductivity coefficient of 
the medium.  Also, the heat flux f  is given 
by  
 

Tf             (5) 

 
where  is the thermal conductivity 
constant.  Equations (1)-(5) above are the 
basic equations of homogeneous anisotropic, 
thermoelastic bodies. 
 
 
3. Representation of the governing 
equations in terms of complex coordinates 
 

If we denote covariant and contravariant 
base vectors in the complex coordinate systems 
by a and a  respectively, the position vector 
r  may be written as 
 

azazr            (6) 
 

where the complex coordinates )z,z(  are 
introduced by the formulas 
 

iyxz,iyxz         (7) 
 

and noting that 21 xy,xx , zz,zz 21  
and 3

3 xz  by tensor transformations.  We 
now restrict our attention to bodies which are 
elastically symmetrical with respect to the 
plane ( 21 x,x ) and assume the state of plane 
strain (Appendix A). 
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The tensors D , T  and F which can be 
expressed by the displacement u , the stress 
t , and the heat flux f  in the rectangular 
coordinates x , are introduced as follows: 

 

u
x
zD                  (8) 

 

t
x
z

x
zT             (9) 

 

f
x
zF                 (10) 

 
From Eqs.(8),(9) and (10), we have the 
following expressions, which need the later 
analyses: 
 

yyxx2211
221112 ttttT       (11) 

 
xyyyxx122211

11 i2it2ttT   (12) 
 

yx21
1 iuuDiuuD         (13) 

 
yx21

1 iffFiffF          (14) 
 

If we remember that uu , tt  in the 
rectangular coordinates and hereafter these 
properties may be used without notice. In 
Eqs.(11)-(14), we denoted t , u  and f , by 

yxxx f,,u,, , since there is no risk of 
confusion in two dimensional elasticity.  To 
develop the theory with complex variable 
coordinates, it is more convenient to introduce 
the tensors G,F  and M  referred to 
complex coordinates, and they are introduced, 
respectively, as follows: 
 

  
x
z

x
z

x
z

x
zsS        (15) 

 

x
z

x
zH            (16) 

 

x
z

x
zK            (17) 

 
where s , ,  are the elastic constant, 

the thermal expansion coefficient and the heat 
conductivity in the rectangular coordinates, 
respectively.  From Eq.(15), and taking 
account of a elastically symmetrical plane 
stated above, we see the elastic coefficient s  
reduced from 21 to the 13 independent 
coefficients: 
 

1261612662211

12
22

11
12

11
22

12
12

22
22

11
11

22
11

11
22

S4/)is2is2s2sss(

4/)is4is4s2s4ss(SS

4/)isisss(SSS 261622112
11
12

12
22     

4/)s2sss(SSS 126622113
22
22

11
11  

4/)s2ss(SS 1222114
12
12   

(18) 
and 
 

 2
22

11
12
11

11
12

12
22 SSSSS          (19) 

 
where the generalized Hooke’s law in 
engineering representation are given as 
follows: 
 

Tsss
Tsss
Tsss

12xy66xy12xx11xy12

22xy26xy12xx11yy22

11xy16xy12xx11xx11
   (20) 

 
From Eq.(16) and (17), after similar 
manipulations, we obtain  
 

122211112212221111 HH,Hi2H  
(21) 

 
122211122212221111 KK,Ki2K            

(22) 
 

where we also used the fact that there are no 
difference between the covariant and 
contravariant tensor in rectangular coordinates.  
From Eqs.(18) to (21), it should be noted that 
the very simple formulas for rotation of the 
coordinates hold, which will be shown later. 

The metric tensor which corresponds to the 
complex coordinates Eq.(6) has constant 
components so that the covariant 
differentiation in this coordinate system reduce 
to partial differentiation. Thus from Eq.(1) we 
obtain 
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zz
U4,

zz
U4

2

12

2

11
(23) 

 
With Eqs.(2) and (3), these give (Appendix B) 
 

TH
z
D2S2SS 11213

      (24) 

 

TH
z
D2S2SS 22231

      (25) 

 

TH
z
D

z
DS2SS 12422

   (26) 

 
Eliminating D from Eq.(24)~(26) gives 
 

)
z
TH

zz
TH2

z
TH(

4
1

z
US

zz
US4

zz
U)SS(2

zz
US4

z
US

2

2

22

2

122

2

114

4

1

3

4

222

4

433

4

24

4

1

 (27) 
Moreover the heat conduction equation of two 
dimensional anisotropic medium given by 
Eqs.(4) and (17) are obtained by using the 
Green and Zerna’s formulation as follows: 
 

0
z
TK

zz
TK2

z
TK 2

2

22

2

122

2

11      (28) 

 
 
4. General solution 
 

The solution of Eq.(28) is of the form: 
 

)z()z()y,x(T 33           (29) 
 

where )z( 3  is an analytic function and 3z  is 
given by 
 

zzz 33              (30) 
 

The characteristic value 3  with 13
 in 

Eq.(30) can be obtained from  
 

0KK2)(K 11312
2

322       (31) 
 

The general solution of Eq.(27) can be taken in 
the form: 
 

phUU             (32) 

where hU  is a general solution of the 
homogeneous equation of Eq.(27) and is given 
by  

)z()z()z()z(U 2211h    (33) 
 

with 

zzz,zzz 2211       (34) 
 

and )2,1j(j  is a root of the equation: 
 

0S4S)SS(2S4S 1
2

43
3

2
4

1  (35) 
 

and the roots can be selected to be these roots 
with modulus less than unity so that  
 

1, 21  
 

On the other hand, a particular solution p can 
be put as 
 

33333333p zdzd)z(Adzdz)z(A    (36)  

 
in which A is a complex constant. By 
substituting Eq.(33) and (36) into Eq.(27) and 
comparing the coefficient of both sides of the 
equation, we get 

)(S4
)(HA

3

3             (37) 

where 
 

132
2
343

3
32

4
313

2
322312113

SS)SS(2S4S)(S

HH2H)(H (38) 

 
Thus the general solution of Eq.(27) has in the 
form: 
 

)z()z()z(ReU2 321       (39) 
 

where an analytic function )z( 3  is 
introduced as follows: 
 

333
3

3
3 dzdz)z(

)(S4
)(H

)z(       (40) 

 
Therefore, by substituting Eq.(39) into Eq.(23),   
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and by exchanging 2211 ,  and 12  with 

yyxx ,  and xy , we obtain  
 

)(
)1(

4
)(

)1(
4

)(
)1(

4
)(

)1(
4

)(
)1(

4
)(

)1(
4

32
3

3
32

3

3

22
2

2
22

2

2

12
1

1
12

1

1
yyxx

(41)   

    

)(
)1(

4)(
)1(

4

)(
)1(

4)(
)1(

4

)(
)1(

4)(
)1(

4i2

32
3

32
3

2
3

22
2

22
2

2

12
1

12
1

2
1

xyyyxx

(42) 

 
and for the temperature distribution, from 
Eq.(29) 
 

)()()y,x(T 33         (43) 
 

where the three complex variables )3,2,1i(i   
were introduced as the affine transformation as 
follows: 
 

)3,2,1j(,
1

zz

j

j
j

       (44) 

 
Similarly the displacement components xu  

and yu  are obtained by substituting Eq.(39) 
into Eq.(24) and integrating as follows: 

 

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

iuu

3
3

3
3

3

3

2
2

2
2

2

2

1
1

1
1

1

1
yx

   (45) 

 
where  
 

)3,2,1j(,
)(H
)(SH4

/)SS2S(2
jj

j11
j1j2

2
j3j

 (46) 

 

)3,2,1j(,
)(H

)(SH4
)SS2S(2

j

j112
j1j23j

 (47) 

 
and where we must exclude the second term in  
the right hand sides of Eqs.(46) and (47) when 

j=1 and j=2. Moreover the resultant force P 
exerted across a part AB on the curve of the 
body, and the moment M about x3 axis which 
perpendicular to the (x,y) plane, are found 
according to Green and Zerna1) in the forms : 
 

B

A
3

3
3

3

3
2

2
2

2

2

1
1

1
1

1

)(
1

1)(
1

)(
1

1)(
1

)(
1

1)(
1

i2
z
Ui2iYXP

  (48) 
 

U
z
Uz

z
UzM  

B

A333333

222222

111111

)()()()(

)()()()(

)()()()(
 (49) 

 

where X and Y are the components of resultant 
forces in the direction of x and y axes, 
respectively.  Thus, the basic equations of 
complex potential representation for two 
dimensional thermoelasticity of anisotropic 
media are given by Eqs.(41),(42),(43) and (45).  
It should be noted that the rigid body 
displacements and rotation are neglected in 
those equations. 
 
 
5. Rectangular coordinate transfor- 
mations of the complex potential 
functions and physical constants 
 
5.1 Translation 

Now, let us consider how the complex 
functions corresponding to a given stress state 
of a body change under the translation from 
one system of rectangular coordinates to 
another, as shown in Fig.1. When the new 
system )iyx(t is translated from the old 
one )iyx(z 111  by a distance )iyx(z 101010 , 
by the condition of stress components are not 
altered by a translation, the transformation 
relation between the complex potentials 

)(),( 2111 and )( 31  related to old 
coordinates )y,x( 11  and the new complex 
potentials )(),( 2111 and )( 31  are 
obtained as follows: 
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)()(
)()(
)()(

30131

20121

10111
       (50) 

 
where  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)3,2,1j(,zzz,
1

z
jj

j

j
j

    (51) 

)3,2,1j(,iyxz,
1

zz
101010

j

10j10
0j

(52) 

 
5.2  Rotation 
   Next consider the effect of rotating the 
axes  leaving the origin fixed as shown in 
Fig.2. We denote the old coordinate systems as 

)y,x( 11 and the new systems )y,x(  whose the 
direction cosines relative to the old system is 

)2,1j,i(,cij , then the relation between the new 
conductivity coefficients  of the new 
system )y,x(  and of the old system 

)y,x( 11  is  
 

)2,1s,r,,(,cc rssr      (53) 
 

where rs  is the conductivity coefficient in  

 

 

 

 

 

 

 

 

the old system )y,x( 11  and mc is a direction 
cosine given by 
 

100
0cossin
0sincos

c m
        (54) 

 
The complex representation related to the 
conductivity coefficients formulas are obtained 
by using Eq.(53) and (54) as follows 
(Appendix C): 
 

i2
33

122211221112

i2
221122

i2
11

i2
12221112221111

e

)iantvarin(,KK
eKKK,eK

e)i2(i2K

 

(55) 
 

It should be noted that 1212 KK  is 
invariant for an arbitrary angle . Similarly, 
the transformation formulas of the thermal 
expansion coefficients )2,1j,i(,ij are found 
in similar form of Eq.(55): 

 

)iantvarin(,HH
eHHH,eH

e)i2(i2H

122211221112

i2
221122

i2
11

i2
12221112221111

            

(56) 
 

The forth-order tensor of elastic constants lijks  
are transformed by 
 

mnoppkojnimijk sccccs l          (57) 
 

Similar to the derivation of Eqs.(55) and (56), 
the following formulas for the elastic 
constants and the characteristic values 

21 , are obtained,  
 

,S)S( 

,eS)S(,eS)S(,S)S(
12
12

12
12

2111
12

11
12

4111
22

11
22

11
11

11
11   (58)    

21e               (59) 
 
where we denote elastic constants in the new 
coordinates (x,y) with a prime, and without 
that in the old coordinates (x1,y1,) (Appendix 
D). Moreover for the constants in the basic 

x1 
z10 

y 

x

y1 

Fig.1  Translation of rectangular coordinates

O1 

O 

Fig.2 Rotation of rectangular coordinates 

y1 

x1 

y 

x 

O1,O 
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equations of Eqs.(41)~(45), it is verified that 
the following expressions hold (Appendix E): 
 

)3,2,1i(e
)iantvarin()2,1i(

)2,1i(e

i2
ii

ii

i2
ii

   (60) 

 
where the prime denotes the quantities related 
to a new system. Also, for the complex 
potential functions, if the new system 

)iyx(t  is rotated with respect to the old 
one )iyx(z 111  by , using Eqs.(55)-(60), 
we obtain 
 

)(e
1
1

)( 1
i2

2

1

1
11

       (61) 

 

)(e
1
1

)( 2
i2

2

2

2
21

      (62) 

 

)(e
1
1

)( 3
i2

2

3

3
31

     (63) 

 
where the complex potentials in the right hand 
side of Eqs.(61)-(63) are new potentials with 
respect to the new systems, and  
 

)3,2,1j(,
1

tt

j

j
j

, t=x+iy    (64) 

 

)3,2,1j(,e
1

tt i
j

j

j
j

      (65) 

 

By using these basic equations and trans- 
formation formulas, complex potential 
functions in various fracture mechanics 
analyses of anisotropic thermoelasticity  
problems will be constructed effectively in 
connection with the singular stress fields.  For 
example, insulated cracks in arbitrary 
directions in anisotropic media under 
stationary uniform heat flow can be simulated 
by continuous distributions of edge 
dislocations as given in the early papers16), and 
a system of singular integral equations of 
Cauchy type may be obtained. 

   Equations (50), (61), (62) and (63) 
correspond to the isotropic and isothermal 
elasticity formula obtained by Mushke- 
lishvili2), and the anisotropic, isothermal case 
of Stroh formalism was considered by Ting17). 
The above transformation formulas obtained 
are summarized in the Table 1 together with 
the isotropic, thermal complex potential 
functions.  In addition, the case of translation 
and rotation occurring simultaneously, is also 
shown in the Table 1. 
 
 
6. Fundamental solutions 

 
6.1 Uniform heat flux q0 at infinity with an 
angle  from the positive direction of the x 
axis.   
  As shown in Fig.3, we seek the complex 
potentials in a case of uniform heat flux q0 at 
infinity. The Fourier’s law of heat conduction 
in anisotropic medium can be written by using 
Eqs.(5) and (10) as follows: 
 

siniqcosqiffiffF 00yx
21   

)(K)(Ki
z
TK

z
TK 331211

(66) 

 
where 

 )1(K)1(Ki
1

1K 322321
3

    (67) 

 
and K21 and K22 are the induced conductivity 
constants given by Eq.(21). Substituting 
Eq.(43) into Eq.(66),we obtain 
 

03
2211

i
1

i
230

3 T
KKKK

)eKeK)(1(q
)(   (68) 

 
where  
 

113122123111 KKK,KKK   (69) 
 
The function )( 2  will be obtained by the 
relation Eq.(40).  In Eq.(68), the constant T0 
denotes the constant temperature rise or fall of 
the medium. The other two complex potentials 

)( 1  and )( 2  will become zero.  
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 6.2 A single temperature dislocation in an 

infinite anisotropic medium  
We assume that the dislocation is located at 

the origin of the rectangular coordinates (x,y). 
The potential will be constructed by the 
following conditions (a) and (b): 
(a) The magnitude of temperature dislocation 

T0 arises when 3  goes round the 
dislocation along an closed curve C, 

 

0

C

TdT              (70) 

 
(b) The magnitude of total heat flow is zero 

when 3  goes round the center of 
temperature dislocation along an arbitrary 
closed curve C, 
 

0dsf
C

n             (71) 

 
where fn is a heat flux in the normal direction n 
of the curve C. The temperature potentials 
which satisfy the Eqs.(70) and (71) 
simultaneously, are given by using Eqs.(43) 
and (66), as follows: 
 

3
0

3 log
)KK(2

KTi
)(        (72) 

 
The complex potentials )( 1  and )( 2  
corresponding to the temperature potential 
Eq.(72) can be obtained by the conditions: (c) 
the displacement dislocation around the 
temperature dislocation is zero, and (d) the 
total resultant force around the temperature 

dislocation is also zero. The result is 
.0)()( 21  

 
6.3 A single concentrated heat source in a 
anisotropic infinite medium  

We assume that the line heat source with a 
total quantity of heat Q per unit length is 
located at the origin of the rectangular 
coordinates (x, y). In this case the temperature 
potential function )( 3  can be derived by the 
following conditions: 

(a) The line integral of heat flux around the 
center of line heat source becomes the total 
heat flux Q. 

(b) The magnitude of temperature dislocation 
is zero when 3  goes round the line heat 
source along an arbitrary closed curve C. 

The temperature potential function )( 3  is 
obtained by using the condition (a) and (b) 
simultaneously, as follows: 
 

33 log
)KK(2

Q)(        (73) 

 
or from Eq.(40), 
 

33
3

3
3

2
33

3 logC
2

)1(
)(

)(S4
)1)(((

)( (74) 

where  

)(S)KK(4
)(H)1(QC
3

33
3

         (75) 

 
The complex potentials )( 1

 and )( 2
 

corresponding to the temperature potential 
)( 3  can be obtained by the conditions: (c) 

the displacement dislocation around the 
concentrated heat is zero, and (d) the total 
resultant force around the concentrated heat 
source is zero. Under these conditions, we 
assume the complex potential functions in the 
forms with the constants C1 and C2: 
 

111
1

1 logC
2

)1(
)(        (76) 

 

222
2

2 logC
2

)1(
)(       (77) 

 
 
 
 
 
 
 
 
 

y 

q0 

x 
 

O 

Fig.3 Uniform heat flux q0 at infinity 
with angle  from the positive x axis. 
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33
3

3 logC
2

)1(
)(         (78) 

 
where C1 and C2 are complex constants and C3 is 
given by Eq.(75). We see that the complex 
potentials (76), (77) and (78) will satisfy the 
conditions (c) and (d), if the constants C1 and C2 
satisfy the following equations, which are derived 
from Eqs.(45) and (48) using above conditions.   
 

333322221111 CCCCCC        

333322221111 CCCCCC    (79) 

333222111 CCCCCC      

333222111 CCCCCC               
 
where jj , (j=1, 2, 3) are given by Eqs.(46) and 
(47), respectively. From Eq.(79), 211 C,C,C and 

2C will be determined completely.  
 
 
7. Conclusion 
 

Basic analyses on the anisotropic thermo- 
elasticity theory have been made on the basis of the 
Green and Zerna’s complex variable approach1).  
First, based on the approach, the stress and 
displacement components were expressed by the 
three complex potentials functions. Special 
attention was paid to the transformation formulas of 
the complex potentials and the physical constants 
attendant on the coordinate translation and rotation 
of the rectangular coordinate systems. These 
formulas correspond to the case of Muskhelishvili’s 
transformation formulas2) for the isothermal, 
isotropic body.  These will be very convenient to 
construct the three complex potentials in the case of 
using multiple rectangular coordinates for the 
various boundary value problems of anisotropic 
thermoelasticity.  Finally, although well known 
simple solutions, the fundamental solutions were 
given by the complex potential obtained.  
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Appendix  
 
A 
In this case, we must replace the elastic constant sij 
for the plane stress with the plane strain ijs~  as  

333j3iijij s/ssss~           (a1) 
 

where the elastic constants sij is given by Eq.(20). 
 
B   
From Eqs.(2) and (3), 
 

vava
2
1TGF     (a2) 

where a  is a metric tensor in two dimension and 
exchanging into the complex coordinates, 

HG,Dv,SF  by Eqs.(8) ~ (9) 
 

,, DaDa
2
1

DaDa
2
1THTSTGTF      

(a3) 
We put 222212121111 T,T,T  and  

1 in Eq.(a2), we obtain  
 

21

112

1

111

2

112

1

111

112211
22

2111
21

1211
12

1111
11

vavavava
2
1

THTSTSTSTS
  (a4) 

where property of symmetry of strain tensor and 
Eqs.(8), (9), (11), (12) were used. Thus, from 
Eq.(a3), using Eq.(18), (19) and ),2,1i(0a ii  

2a12 , 2/1a12 ,  we obtain 
 

TH
z
D2THD2THv2

THS2SS

11111
2,

11

2

1

1111
12

11
22

11
11   (a5) 

The other equations (25) and (26) will be derived 
similar procedure to Eq.(a4).  
 
C 
The new conductivity constant ij  after rotation 
of the old coordinates are given by Eq.(53) as 
follows: 
 

211211
2

221212211112121211111111

rss1r111

sincossincoscos
cccccccc

cc
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2
2212

2
1122

2 sin2sincossin  
(a6) 

 
Similarly, 

2/2sin2cos2/2sin 22121121  (a7) 
2

2212
2

1122 cos2sinsin    (a8) 
 

Therefore, substituting Eqs.(a6), (a7) and (a8) into 
Eq.(21) corresponding the new coordinate systems, 
the results are      

12221111 i2K = )sin(cos 22
11 +

2sini2cosi2
2sini)sin(cos2sin2

22

11
22

2212

i2
11

i2
122211 eKei2 i2

1111 eKK  
 (a9) 

Similarly, 
 

  i2
2222 eKK ,  1212 KK  (invariant)    (a10) 

and  
i2e              (a11) 

 
D 
Using Eq.(57), the new elastic constants ijs  

)6,2,1j,i(  after rotation of the old coordinates 
are given by the old elastic constants ijs  

)6,2,1j,i( as follows3) if we write only 11s  
 

2sin)sinscoss(2/2sin

)ss2(sinscosss
2262

16
2

6612
4

22
4

1111 (a12) 

 
Substituting ijs (i,j=1,2,6) into Eq.(18) and (19),  
we obtain after some manipulations  
 

)iantvarin(S4/)s2sss(

4/)s2sss(SSS
11
1112662211

126622113
22

22
11

11   (a13) 

 
The other expressions of Eqs.(58) and (59) will be 
found from the similar manner. 

 
E 
By using Eqs.(a13) and the related formulas3), we 
obtain from Eq.(46) as follows: 
 

)14a(i2
j

jj
i2

j11
i2

j1j2
2
j3

jjj11j1j2
2

j3j

e

)(H/e)(SH4e/)SS2S(2

)(H/)(SH4/)SS2S(2

   

  Similarly, the other transformation formulas of 
the induced constants will be obtained. 
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