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1. Introduction 
 
Kinked cracks or deflected cracks are frequently 

observed in the fracture of brittle materials under 
non-uniform loadings or non-homogeneity of 
material properties. It is important in achievement 
of high fracture toughness in many brittle materials, 
in particular composite materials, to make clear the 
fracture behavior of kinked cracks at the interface 
of these materials. Primary concerns of this subject 
are to calculate the stress intensity factors at the 
crack tips and to clarify the behavior of crack 
propagation of the kinked cracks.  

A number of papers in this area has been 
published in isotropic materials1)~14) so far, where 
fracture parameters and fracture criteria were 

studied. However, much less work has been done on 
the area for anisotropic materials15)~19), particularly 
bonded anisotropic materials. In the previous 
papers20)~23), the author has presented the analysis 
method of cracks and analyzed bonded anisotropic 
media with boundary cracks, taking account of the 
stress singularity of the vertex of the kinked crack; a 
crack terminating at the interface in arbitrary crack 
angle 20), a crack kinked at and going through the 
interface 21), a crack kinked at the interface and going 
along the interface22), a crack kinked at the interface 
back into the first medium23), and clarified the 
influence of the various factors on the stress intensity 
factors at the kinked crack tips. 

 In the present paper, we deal with the singular 
stress fields at the vertex of the kinked crack back into 
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Fig.1 A crack kinked at the interface of bonded anisotropic 
media under longitudinal shear loadings and 
subsidiary coordinate systems. 
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the first medium as shown in Fig.1. This problem 
is closely related to, for example, the design of the 
interface between fiber and matrix in fiber 
reinforced composites where it is desired that any 
matrix crack approaching a fiber kinks at the 
interface, thereby allowing the fiber survive. The 
solution method of this paper are founded on the 
previous paper23), based on two dimensional, 
anisotropic elasticity of complex potential 
functions. By using the singular point method, the 
problem is reduced to solving a system of singular 
integral equations with generalized Cauchy kernels. 
The singular stress fields near the vertex of the 
kinked crack are obtained by the function theoretic 
method24). Solving the singular integral equation 
numerically, the generalized stress intensity factor 
at the kinked vertex is calculated and clarified the 
influences of anisotropy of bonded media, kinked 
angles, and the ratio of the kinked crack lengths.  

 
 
2. Statement of the problem and basic 
equations 
 

As shown in Fig.1, a crack kinks at the 
interface and goes back to the first medium with 
arbitrary angles of . The medium is made 
of anisotropic two semi-infinite spaces I and II 
with different elastic constants.  These semi- 
infinite spaces are perfectly bonded together 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

along the common surface L. A rectangular 
coordinate system (x, y) is located on the bonded 
surface of the media. The subsidiary rectangular 
coordinate systems (xj, yj)(j=1,2) are also located on 
the crack L1 of length 2a1, and the crack L2 of 
length 2a2 as shown in Fig.1. The cracks Lj(j=1,2) 
make angles j(j=1,2) with the x axis, as shown in 
Fig.1. The distances between the center of the crack 
Lj(j=1,2) and the interface are hj(j=1,2). The media 
are subjected to antiplane shear stresses j(j=0,1,2) at 
infinity.  
   The three complex variables referred to the 
coordinates )y,x( and (xj, yj,)(j=1,2) are defined as 
z=x+iy, zj=xj+iyj(j=1,2). In the following analysis, 
we employ the subscript j (=1, 2) for the quantities 
referred to the coordinate systems (xj, yj,)(j=1,2), 
unless stated otherwise.  The Greek numerals I and 
II are used to denote the quantities associated with 
the lower and upper half-spaces, respectively. 
The stress components m

zy
m
zx , σσ and the displace- 

ment mu ( m=I , II) with respect to the rectangular 
coordinate system (x,y) are expressed by the two 
complex potential functions mφ (m=I,II) as 
follows23): 
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and Cst (s,t=4,5) are elastic constants for antiplane  
shear loading which is characterized by the 
symmetry with respect to the x, y plane. The 
characteristic value of m which satisfies the 
condition |m|<1 is obtained by the quadratic 
equation: 
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The relation between the complex potential mj(m) 
with respect to the coordinate systems (xj, yj) in the 

lower half space and the complex potential mj(m) 
are, if we write down only the potentials in the 
lower half space, as follows: 
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where the relation between mζ m=I,II) and jη  
(j=1,2) is 
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The constants kj
m,, which concern with the   

rectangular coordinates (x,y),  are connected 
with Kj

m related to the rectangular coordinates 
(xj,yj) (j=1,2) as 
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1

m
1 eKk α , m

2
m
2 Kk          (14) 

The second equation shows invariant with 
rotation of the coordinate. The boundary 
conditions of this problem can be written in the 
forms: 
(a)Along the interface of the media (y=0) 

IIIII
zy

I
zy uu,             (15) 

(b)Along the cracks Lj (yj=0, |xj|<aj, j=1,2) 
       0I
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σ               (16)       

(c)At infinity )( m   

0
II
zy

I
zy2

II
zx1

I
zx ,,       

(17) 
 
3. Derivation of singular integral 
equations with generalized Cauchy 
kernels 
 

To apply the method of continuous 
distributions of the screw dislocations along the 
kinked crack, it is necessary to obtain the 
fundamental complex potentials of two screw 
dislocations existing at the two points (xs0*, 
ys0*) (s=1,2) in the lower half space of the media. 
This potentials, which satisfies the boundary  

conditions given by Eq.(15), can be obtained by the 
use of the “Riemann-Hilbert boundary value 
problem” as follows: 
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and bj(j=1,2) are the magnitude of the Burgers 
vectors of the screw dislocations, and Aj(j=1,2,3) 
are constants including the elastic constants and 
given by Appendix A, and we assumed orthotropic 
elastic media in the present analysis, and so forth. 
In this case, it should be noted that the material 
constants km, kjm and m reduce to be real.      
  By using the fundamental complex potentials of 
Eqs.(18) and (19), and distributing the dislocations 
on the two cracks L1 and L2, we assume the 
required complex potentials in the forms: 
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where Bj (j=1,…,6) and Cj (j=1,…,6) are constants 
and given in Appendix B, and *

1T  and *
2T  corre- 

sponding to far stress fields of the present media are 
given by 
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where Dj (j=1,2) are the constants and given by 
Appendix C.  In derivation of Eqs. (21) and 
(22), Eqs. (8), (11), (12) and transformation 
formulas Eqs. (6) and (7) of complex potentials 
are used, in addition the conditions of continuity 
of two cracks and geometry of crack 
configuration are also used, namely: 
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where sj (j=1,2) denote the points on the crack 
Li(i=1,2).  A relation between the far field 
stresses j(j=1,2) is given by  
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 Equation (27) can be derived from the 
condition of the continuity of displacement at 
the bonding interface similar to the case of plane 
problem of dissimilar media. The complex 
potentials Eqs.(21) and (22) of the present 
problem satisfy the boundary conditions of 
Eqs.(15) and (17) automatically. Then, to satisfy 
the remaining boundary condition Eq.(16), a 
system of singular integral equations with 
generalized Cauchy kernels for the density 
functions bj(sj) must hold as follows : 
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where the kernels Mij (X, S) and the constants 
Ci* (i=1, 2) are given in Appendix D.  In the 
integral equations (28) and (29), the following 
non-dimensional quantities are introduced: 
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4. The characteristic equation at the vertex 
of the kinked crack 
 
  To obtain the characteristic equation for 
determination of the stress singularity of the kinked 
vertex, we use the function-theoretic method24).  
Taking account of the known order of stress 
singularity of the crack tips -1/2 and the unknown 
order of stress singularity ω at the vertex of the 
kinked crack, we assume the density functions 
Bj(Sj)(j=1,2) as follows: 
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where )2,1j()S(G jj   are the bounded functions in 
the closed interval |Sj|<1. Since integral 
equations of Eqs.(28) and (29) have the 
generalized Cauchy kernels, and after introducing 
the Eqs.(32) and (33) into the integral Eqs. (28) 
and) (29), it must look into the singular behavior 
of the integrals at the upper and lower points 

1Sj   (see Appendix E) .  By using these 
singular behavior of integrals, and by the 
condition due to )2,1j()S(G jj   having the 
non-zero values, we obtain the characteristic 
equation for determination of the order of stress 
singularity ω  of the kinked vertex in the form of 
Eq. (34) (see next page).  Equation (34) shows 
that the stress singularity ω depends on the elastic 
constants as well as the kinked angles )2,1j(j α .  
It should be noted that Eq. (34) has multiple 
solutions of order ω, which correspond to those of 
two bonded wedge problems at the kink A and B 
in Fig.1 for arbitrary angles of )2,1j(j α , where 
the stresses are generally singular except for the 
particular cases. For the nonhomogeneous 
isotropic materials, Eq.(34) reduces to Eq.(35),  

(28) 

(29) 
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III G/GΓ   (G is the shear elastic constant) in 
Eq.(34).  Numerical results of Eq.(35) 
coincides with the past investigation25). 
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5. Analysis of interface stresses and 
generalized stress intensity factors at 
the vertex of the kinked crack 

 
 First, we analyze the singular stress field at the 
kinked point A shown in Fig.1. This potential 
which is in the upper medium (II), will be 
obtained from the Eq.(19), taking account of the 
distributing the dislocations on the cracks and 
the far stress field as: 
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where the following non-dimensional notations  
were used: 

Especially, when 1 , namely, for the case of 
homogeneous isotropic elastic medium, Eq.(35) are 
reduced Eq.(36). Equation (36), of course, includes 
the order of stress singularities of the points A and 
B as shown in Fig.1.  
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By using the asymptotic behavior of the integral 
(37) as 0ZfI   (see Appendix E), we obtain the 
complex potential of the upper half space, as 
follows:  
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Thus, the interface stresses near the kinked vertex 
in the upper half space with respect to the 
coordinates (x*, y*) are given by 
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Next, we will proceed to obtain the expression 
of the generalized stress intensity factor of the 
kinked vertex. The generalized stress intensity 
factor *

3k  at the kinked point O3 in Fig.2, is 
defined in regard to the direction of the 
coordinate ,3x : 
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where 
33yzσ can be obtained from the complex 

potential with respect to the coordinates 
(x3*,y3*) using the coordinate transformation 
formula. Thus, the complex potentials with 
respect to the coordinates )y,x( 33 can be written 
as follows: 
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where 
  133333 a/)Γ1/()Γ1(iyx η  

and 3 is a characteristic constant with respect to 
coordinates (x3,y3). Therefore, the singular stress 
fields near the point O3 are written as 
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From Eqs.(43) and (46), the generalized stress 
intensity factor then is  
 


 

   
 

    




















































ωωαα

ωπ

ωαα

ω

ω

ωωθθθθ

γγ

γ
γγ

ωπ

R
1

ee

e)1(G

ee

)1(G
a

1
1ee

sinkk2
ekekk

Rek

1ii

i
2

1ii

1
1

1

1i1iII
2

iII
1*

3

2211
ⅡⅡ

Ⅱ

ⅠⅡ

ⅡⅠ

Ⅰ

(47) 
In Eqs.(45), (46) and (47), the values of )1(G1 and 

)1(G2  are obtained from the solution of the 
singular integral equations (28) and (29). 
 
 
6. Numerical solution of the singular integral 
equations and the generalized stress 
intensity factors 
 
6.1 Numerical solution of the singular integral 

equations. 
For the numerical evaluation of the singular 

integral equations, we use Gauss-Jacobi type 
integration formula26): 
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Fig.2 Coordinate systems to decide the generalized 
stress intensity factor at the kinked vertex. 
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n βα  are Jacobi polynomials and the 

weighting constants are given by  
 

 
 

 
 

where (･) denotes Gamma function. Then, the  
integral equations (28)  and  (29) may now be  
expressed as 
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On the other hand, the single-valuedness of the 
displacement Eq.(31) is  
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Equations (51) and (52) include )2nn( 21   
unknown constants, and number of the algebraic 
equations is (n1+n2), and it is necessary more 
two equations. One of these is the single-valued 

condition Eq.(54), and the other equation is as 
follows: 
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Equation (55) can be obtained from the asymptotic 
behavior of the integral equation of Eq.(28).  
Equation (55) contains two new unknown constants 
of G1(1) and G2(－ 1), and the additional two 
equations to be determine these constants are 
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These equations are well known as the Lagrange’s 
interpolation formula. Thus, all of the unknown 
constants )4nn( 21  will be determined by the 

)4nn( 21   equations, and the generalized stress 
intensity factors at the vertex may be determined 
from the Eq.(47). 
 
 
6.2 Non-dimensional, generalized stress 

intensity factors 

  The generalized stress intensity factor defined 
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Eq.(43) is normalized as, if only 1 acts on the 
media: 
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(60) 
where  

   ωω αατ   21113 cosR1a'k   (61) 
 

and corresponds to the entire crack length of 
projection of kinked crack length to the 
extension of main crack length, and  
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Also, for the case of 0 only, we obtain 
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(63) 
where  

   ωω αατ   21103 cosR1a''k     (64) 
and  

  

   ω

ω

αατ

αατ













210

2**
2

210

1**
1

cosR1
)1(G

)1(G

cosR1
)1(G

)1(G
                             

  
 
The values of Eqs.(62) and (65) can be obtained 
from Eqs.(51) and (52) which are divided by the 
Eqs.(61) and (64), respectively.    
 
 
7. Numerical results of the generalized 
stress intensity factors and discussion 

  Numerical calculations of the generalized stress 
intensity factors of the kinked vertex were carried 
out on the bonded isotropic media as well as the 
bonded anisotropic media.  The elastic constants 
and their symbols of bonded media used in the 
numerical calculations are shown in from Table 1 to 
Table 4, in which the symbol A denotes an isotropic 
medium, the symbols B and C orthotropic media. 
Table 2 and Table 4 show the combinations of those 
elastic constants. Note that the A/A is the case of 
homogeneous isotropic medium, and C/A and B/A 
are the cases of isotropic medium in the lower half 
space bonded to the orthotropic medium in the 
upper half space.  
  To check the accuracy of the numerical results,  
numerical calculations of the generalized stress 
intensity factor K3* for various values of n1(=n2) 
were performed for the case of isotropic, 0=0, 





=45° and R=0.1, as shown in Fig.3. The 

difference between value of n1=50(=n2) and 
n1=300(=n2) is 0.1%, and we performed as 
n1=n2=300 for all the numerical calculations. 
 First, for the two bonded isotropic materials with 
different elastic constants, the generalized stress 
intensity factor K3*, which is normalized as Eq.(60), 
as a function of the of crack length R(=a2/a1), is 
plotted in Fig.4, for the case of 0=0,1≠0,2≠0 at  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      C55     C45      C44 

A1     1        0       1 
A2     2        0       2 
A0.5   0.5       0      0.5 
 

Table 1 Symbols of elastic constants for isotropic media.  

Lower elastic     Upper elastic    Symbols 
 constants       constants 

 
A1           A1            A1/A1      
A2           A1            A2/A1 
A0.5          A1            A0.5/A1 

Table 2 Symbols of bonded isotropic media. 
(53) 



 

 
 

different values of the crack angles 1(=2)= 
15°,30°and 45°.  A homogeneous isotropic 
body is also depicted in the figure for 
comparison between them.  The stress intensity 
factor K3* for each given conditions is nearly 
constant for the range of R>0.3, and decreases 
rapidly (absolute values increase) as R decreases 
in the range of R<0.2. 
Figure 5 shows the generalized stress intensity 

factor K3**, which is normalized as Eq.(61), for 
the case of 0≠0,1=0,2=0. The other conditions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are the same as Fig.4. At the value of R=1, K3** 
becomes zero due to their symmetry of kinked 
crack, as would be expected. The generalized stress 
intensity factor K3** increases rapidly as R 
decreases, and the influences of elastic constants 
and crack angles on K3** also increase rapidly.  
 Figure 6 shows the relation between K3* and R in 

the case of anisotropic bonded materials for 0=0,1

≠0 and 2≠0, at different values of the crack 
angles 1(=2)=15° ,30°and 45° , where the 
elastic constant in the lower half space is fixed with 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     C55      C45      C44 

A     1        0        1 
B     1        0        2 
C     1        0       0.5 
 
 

Table 3 Symbols of elastic constants  for 
anisotropic media.  
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Table 4 Symbols of bonded anisotropic media. 

Lower elastic   Upper elastic   Symbols 
 constants      constants 
 

A            A            A/A      
B            A            B/A 
C            A            C/A 
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an isotropic material to make clear the influence 
of anisotropy. It is found from the figure that the 
normalized, generalized stress intensity factor 
K3* is considerably influenced by anisotropy for 
all the range of R. 
 Figure 7 shows the generalized stress intensity 
factor K3** , as a function of R for the case of 0

≠0,1=0 and 2=0. The other conditions are the 
same as the case of Fig.6. It can be seen from 
the figure that anisotropy of the materials has 
significant effects on the generalized stress   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

intensity factor K3**, as decreasing R. This 
phenomenon is similar to the case of the Fig.5.  
 
 
8. Conclusion 
 
  The singular point method connected with the 
two dimensional anisotropic elasticity of complex 
potential functions has been developed for the 
singular stress analysis of the vertex of the kinked 
crack at the interface of two bonded anisotropic 
media under antiplane shear loadings. The problem 
was reduced to solving a system of the singular 
integral equations with generalized Cauchy kernels. 
The singular stress field near the vertex of the 
kinked crack was obtained with the generalized 
stress intensity factor. Solving the singular integral 
equations numerically, the generalized stress 
intensity factor at the vertex of the kinked crack 
was calculated, and it was found that the influences 
of anisotropy of the bonded media, kinked angles 
and the crack length ratio of the kinked crack on the 
generalized stress intensity factor were considerable 
large. 
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(a8) 
The other asymptotic formulas of the Cauchy 
integrals are obtained similar to the Eqs.(a8), and 
they are omitted. 
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