
Toshimi KONDO1, Masato KUGAWA2, Yohei KURABE3, Motojiro SUGISAWA4

Toru SASAKI1, Masataka KOBAYASHI5

1Department of Mechanical Engineering, Nagaoka National College of Technology
2 Muratajyuki Corporations, 1-13-15 Sano Tochigi Prefecture

3Electrical & Mechanical Engineering Systems Engineering Advanced Course, Nagaoka National College of Technology 
4Technical Section, General Affairs Division, Nagaoka National College of Technology

5Professor Emeritus, Nagaoka National College of Technology

Key Words: stress intensity factor, sharp V-notch, transverse bending, fracture mechanics, strain gage

1. INTRODUCTION 

Sharp V-notches in structural components give 
rise localized stress concentration which decreases 
the maximum load-bearing capacity of the 
component, and may generate a crack or lead to 
early crack initiation. Notches may be regarded as 
sharp when the radius of curvature of their tips is 
very small compared with the length of the notch 
sides. Sharp angular corners of holes with machined 
notches can also be considered as sharp notches, 
and cracks can be regarded as particular sharp 
notches, for which the included angle is zero. If we 
take a polar coordinate system centered at the tip of 
a notch angle �2 , the stresses near the notch tip can 
be expressed as )(frK)(frK 2

1
,II1

1
,I ����� ��

�
��

�
, where 

�  and � are the characteristic values depending on 
the notch angle between two stress- free boundaries, 
and

�,IK  and 
�,IIK are called as the generalized 

stress intensity factors of mode I and mode II , 
respectively. Thus, for given geometry of compo- 
nents and loading conditions, �,IK and �,IIK

completely characterize the stress state in the region 
near the notch tip, and are a key factor in solving 
the problems related to the strength evaluation of 
materials1), crack initiation2),3) and the application to 
the fatigue4) of notched materials under the cyclic 
loading. The limiting case of the notch angle�

02 �� corresponds to a crack, and ������ 11 �

2/1�� , 0�� and ��� � 2/1
I rK 2/1

IIrK � , where IK
and IIK  are widely-used stress intensity factors of 
linear fracture mechanics. Since the pioneer works 
of Williams5), over the past decades, a number of 
studies have been conducted on the singular stress 
fields of the V-notched plates by the various 
methods of solution, such as collocation methods6), 

7), finite element methods8), 9), boundary element 
methods10), and theoretical analyses11), 12). However, 
only a few works concerned with those problems 
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The objective of this paper is to confirm the usefulness of the proposed method of determination for 
generalized stress intensity factors (GSIFs) of sharp V-notched plates under transverse bending based on 
Kirchhoff plate theory. First, by using the eigenfunction expansion method, singular strain fields in the 
neighborhood of the V-notch including the non-singular terms are derived. Second, using these strain fields, a 
theory of determining the GSIFs is presented under the condition of mixed mode loading. Finally, following 
the method, experiments on the specimens with various notch angles were performed for the mode I loading 
condition by using strain gages. The finite element analysis is also carried out to compare with the 
experimental results. The both results show good agreement between them. 
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have been studied on experimental procedures, such 
as the method of caustics13), 14), the photoelastic 
technology15) and recently the coherent gradient 
method16). In the previous papers, the strain gage 
method of determination of GSIFs at the sharp 
V-notched plate have been developed, where the 
V-notched plate under tension17) and in plane 
bending18) were treated.  

In this paper, the strain gage method is applied to 
the determination of GSIFs at the V-notch of the 
plate under transverse bending. The Kirchhoff19)

plate theory is used. The eigenfunction expansions 
together with complex functions are employed to 
derive the singular strain fields in the neighborhood 
at the tip of the V-notch including the non-singular 
terms. Second, using these strain fields, a theory of 
determining the GSIFs is presented under the 
condition of mixed mode loading. Finally, following
the method, experiments on the specimens with 
three types of notch angle using strain gages were 
performed for the mode I loading condition. The 
finite element analysis is also carried out to 
compare with the experimental results. The both 
results show good agreement between them and as 
a result they are influenced on the notch angle.

2. SINGULAR STRAIN FIELDS AROUND 
THE V-NOTCH 

 The plate with a sharp V-notch is subjected to a 
transverse bending load as shown in Fig.1. Let 

),r( �  be a polar coordinate system centered at the 
tip of the V-notch, such that the line 0��  axis is 
bisector of the notch angle ,2� and the angle 
between the x-axis and the line perpendicular to the 
straight side of the plate is denoted by � . The 
length of line from the notch tip to the side of the 
plate, which is perpendicular to the plate side as 
shown in Fig.1, is denoted by a. 

On the basis of Kirchhoff plate theory19), the 
strain components ��� ��� rrr ,,  of the plate free 
from lateral loads is expressed in terms of two 
complex potential functions )z(�  and )z(� 20):

� �)()( zz2rr ����������� �� � � � � � (1)
� � �

��� ���� ��������� i2
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where �� irez , and �  denotes a distance from the 
mid-plane in an un-deformed plate to any point 
including the surface of the plate. From the stress- 
strain relations, the stress components ��� ��� rrr ,,
corresponding to eqs. (1) and (2) are derived: 
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where � is Poisson�s ratio, and E is Young�s 
modulus of the plate. To obtain singular strain fields 
to the present problem, the eigenfunction expansion 
method is used. 

We assume the complex potential functions of 
)z(�  and )z(�  near the tip of the V-notched plate 

analogous to the plane problems17), as follows: 
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where nA  and nB  are real numbers determined 
by the boundary conditions, and )1/()3( ������� .
The eigenvalue of n�  and n�  correspond to 
mode I and mode II, respectively, which satisfy the 
following characteristic equations: 

02sin)1(2sin nn ��������        (7) 
02sin)1()1(2sin nn ���������     (8) 

which are derived from the stress free boundary 
condition along the two notch sides. It is noted that 
the eigenvalues are influenced by the notch angles 
as well as Poisson�s ratio � . Substituting eqs.(5) 
and (6) into eqs.(1) and (2), we obtain 
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(9)Fig.1 Transverse bending of V-notched plates and
the coordinate systems  
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where �� irez , and �  denotes a distance from the 
mid-plane in an un-deformed plate to any point 
including the surface of the plate. From the stress- 
strain relations, the stress components ��� ��� rrr ,,
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where � is Poisson�s ratio, and E is Young�s 
modulus of the plate. To obtain singular strain fields 
to the present problem, the eigenfunction expansion 
method is used. 

We assume the complex potential functions of 
)z(�  and )z(�  near the tip of the V-notched plate 

analogous to the plane problems17), as follows: 
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where nA  and nB  are real numbers determined 
by the boundary conditions, and )1/()3( ������� .
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mode I and mode II, respectively, which satisfy the 
following characteristic equations: 
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which are derived from the stress free boundary 
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� The first non-zero eigenvalues of 1�  and 1� �
of� the above eqs.(7) and (8) are real, where 

12/1 1 ���  and 12/1 1 ���  for ����� 2/ , and 
therefore the strains in eqs.(9),(10) and (11) have 
singularity at the notch tip and expressed by 
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Similarly, the singular stress components 
,rr� ��� �� r, are derived by eqs.(3) and (4) for n=1, 

as follows:
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In this study, the GSIFs of �,IK  and �,IIK  are 
defined, following by Chen11), as follows: 
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The coefficient )1/()3( ���� in the right hand side 
of eq.(19) is added to satisfy the consistency to the 
plane problems. Substituting eqs.(16) and (17) into 
eqs.(18) and (19), we obtain  
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Thus we obtain the singular strain fields near the 
V-notch in the final form including the non-singular 
terms fr3, f�3, fr�3 as follows: 
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Similarly, for the singular stress fields: 
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where *
3r

*
3

*
3r f,f,f ��� is also non-singular terms.  If we 

put ��� , 2/111 ���� ,  i.e., for the special 
case of a crack , the singular strain and stress fields 
are obtained from eqs.(24)~(29), as follows: 
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These equations are coinciding with those obtained 
by Williams21) for the crack problem under 
transverse bending. 

3. PROCEDURE OF DETERMINATION 
OF GSIFs

In the mixed loading condition, to separate the 
GSIFs �,IK  and �,IK , we must measure the strains 
along more than two points in any directions and 
the line extending from the notch tip. Basically, 
although both strains rr� and ��� can be available 
to obtain �,IK  and �,IK , we used rr�  in this 
study. The strip strain gages consisting of five 
measuring grids are positioned along the two 
directions of 1���  and 2� measured from the 
extension of the bisector of the notch angle as 
shown in Fig.2. We denote the strains of the five 
points in the directions 1�  and 2�  as i1r�  and 

i2r� )5,,1i( ���� , respectively. Moreover, the 
distances from the notch tip to each center of strain 
gage position in the direction of 1�  and 2�  are 
denoted by i1r  and i2r , respectively (see Fig.2). 
Substituting the measured quantities of i1r�  and 

jir  into eq.(24), we obtain the basic expressions to 
separate GSIFs of �,IK  and �,IK  under mixed 
mode conditions as follows: 

5,2,1 ��i

�1

�2

Strain 
Gage 

ir1

ir2

x

Fig.2� Strain gage positions and directions 
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Table 2� Mechanical properties of the specimen

Young�s Modulus 
(GPa) 

Poisson�s Ratio Yield Strength 
(MPa) 

Tensile Strength 
(MPa)

70.3 0.34 91.1 197 

1,Iji11ji11jirji1 KrYBrXAr,Z ����� )()()(     (36)

1,IIji22ji22jirji2 KrYBrXAr,Z ����� )()()(     (37)
)21;521( ,j,,i �� �

where jX and jY  are the functions of only jir ,
and jA and jB are constants that do not include 

i1r�  and i2r�  (see Appendix). Equations (36) and 
(37) express the plane in the three dimensional 
coordinates )Z,Y,X( jjj  and show that �,IK  and 

�,IK  can be obtained from the intersection of the 
�jZ axis (see Fig.3) and the plane constructed by 

the least squares method using the strains i1r�
measured in the two directions 1�  and 2�  as 
shown in Fig.2.  

4. EXPERIMENTAL PROCEDURE AND  
FINITE ELEMENT ANALYSIS

4.1 Test Specimen and Experiment
  Experiments are performed to demonstrate the 
method described above. Transverse bending 
specimens with w=500mm width and h=100mm 
length made of aluminum 5052 alloy, which 
fabricated from a 8mm thick plate, were used (see 
Fig.1). Three types of notch angles corresponding 
to the mode I loading condition were machined by  
the wire electric discharge machine with a wire of 
0.03mm diameter (see Table 1). Thus, the radius of 
curvature of the notch tip is 0.015 mm and is very 
small compared with the notch sides, and it may be 
regarded as the sharp notch. Mechanical properties 
of the specimens are summarized in Table 2.�
Strain gages with five element grids with gage 
length is 1mm (Kyowa Company, KFG-1- 
120-Da-23N-10C2) were positioned along the line  

deg9021 �����  to obtain still larger strains. The 
CCD camera with 0.01mm accuracy was used to 
measuring the distances from the each strain gage 
position )5,,1i:2,1j(rji �����  (see Table 3). The 
suitable location of strain gage was referred to the 
results studied by Dally and Sanford22) for the crack 
problem. The transverse bending moment was 
carried out by the four-point bending apparatus 
from 100N to 220N by the digital-testing machine. 
The magnitude of the loads are determined to hold 
the small scale yielding condition in linear fracture 
mechanics, specifically we took the radius of plastic 
zone size as within 0.1mm. Here, the following 
non-dimensional notations are used: 

1

1

11

1

1 1
0

,II*
,II1

0

,I*
,I a

K
K,

a

K
K

��

�
���

�
�

��
�

��
�   (38),(39) 

where 2
0 wt/P3 ���  and �  is the distance from 

the support to the loading position of the plate (see 
Fig.1). It should be noted that the theoretical values 

*
,I 1

K �  and *
,II 1

K �  may be independent of the load 
for the given notch angles and shapes. 

4.2 Finite Element Analysis
  Finite element analysis (FEA) based on the 
Kirchhoff plate theory was performed to compare 
with the results of the experiments. Configurations 
and boundary conditions of the specimens used in 
the analysis are the same as those in the 
experiments. In the finite element analysis, we used 
the [ANSYS] for each specimen, following by the 
method outlined in the previous chapter. Figure 4
shows the typical finite element mesh for the 
analysis, consisting 8680 elements and 8109 nodes, 
and the most fine mesh length is 710 � m  near the  

Table 1� Specimen dimensions   

Specimen �2 (deg) 1� 1� � (deg) h (mm) w (mm) a (mm) t (mm) 

A 0 0.5 0.5 
B 30 0.55498 0.53625
C 60 0.62031 0.58097

0 100 500 25 8

― 35 ―



Toshimi KONDO, Masato KUGAWA, Yohei KURABE, Motojiro SUGISAWA,Toru SASAKI, Masataka KOBAYASHI

)5,,2,1i(deg,90),mm(r 1i1 ���� )5,,2,1i(deg,90),mm(r 2i2 �����
Specimen 

11r 12r 13r 14r 15r 21r 22r 23r 24r 25r
A 1.78 3.78 5.78 7.78 9.78 1.65 3.65 5.65 7.65 9.65 
B 1.73 3.73 5.73 7.73 9.73 1.61 3.61 5.61 7.61 9.61 
C 2.24 4.24 6.24 8.24 10.24 1.87 3.87 5.87 7.87 9.87 

)5,,2,1i(deg,90,10 1
6

i1r ������ � )5,,2,1i(deg,9010 2
6

i2r ������� �

Specimen Load 
(N) 

11� 12� 13� 14� 15� 21� 22� 23� 24� 25�
100 71 53 43 39 36 68 49 40 36 31 
130 88 66 53 48 44 88 65 52 47 41 
160 108 81 66 58 53 105 76 63 55 49 
190 129 95 80 71 66 132 95 80 68 62 

A

220 154 114 95 85 78 154 113 93 81 74 
100 74 53 43 38 33 70 52 43 42 35 
130 94 68 55 49 44 93 67 57 52 46 
160 120 86 70 63 56 118 84 72 66 57 
190 143 104 85 75 68 140 102 84 77 67 

B

220 161 117 95 83 74 156 116 98 89 75 
100 65 55 47 43 40 70 54 48 41 40 
130 87 73 64 58 56 93 72 65 56 51 
160 104 88 76 69 65 114 90 81 69 63 
190 122 102 88 80 76 132 102 90 79 71 

C

220 147 124 106 97 89 156 122 109 95 87 

Table 3� Distances from the notch tip to the strain gage positions

Table 4� Strains i1r�  and i2r� )5,,2,1i( ����  in the direction of deg901 ��  and deg902 ��� .

11 �,��,� K,K

Fig.3 Least squares plane for determination of �,IK  and �,IK

Y1,Y2

X1,X2

Z1,Z2

O
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)5,,2,1i(deg,90),mm(r 1i1 ���� )5,,2,1i(deg,90),mm(r 2i2 �����
Specimen 

11r 12r 13r 14r 15r 21r 22r 23r 24r 25r
A 1.78 3.78 5.78 7.78 9.78 1.65 3.65 5.65 7.65 9.65 
B 1.73 3.73 5.73 7.73 9.73 1.61 3.61 5.61 7.61 9.61 
C 2.24 4.24 6.24 8.24 10.24 1.87 3.87 5.87 7.87 9.87 

)5,,2,1i(deg,90,10 1
6

i1r ������ � )5,,2,1i(deg,9010 2
6

i2r ������� �

Specimen Load 
(N) 

11� 12� 13� 14� 15� 21� 22� 23� 24� 25�
100 71 53 43 39 36 68 49 40 36 31 
130 88 66 53 48 44 88 65 52 47 41 
160 108 81 66 58 53 105 76 63 55 49 
190 129 95 80 71 66 132 95 80 68 62 

A

220 154 114 95 85 78 154 113 93 81 74 
100 74 53 43 38 33 70 52 43 42 35 
130 94 68 55 49 44 93 67 57 52 46 
160 120 86 70 63 56 118 84 72 66 57 
190 143 104 85 75 68 140 102 84 77 67 

B

220 161 117 95 83 74 156 116 98 89 75 
100 65 55 47 43 40 70 54 48 41 40 
130 87 73 64 58 56 93 72 65 56 51 
160 104 88 76 69 65 114 90 81 69 63 
190 122 102 88 80 76 132 102 90 79 71 

C

220 147 124 106 97 89 156 122 109 95 87 

Table 3� Distances from the notch tip to the strain gage positions

Table 4� Strains i1r�  and i2r� )5,,2,1i( ����  in the direction of deg901 ��  and deg902 ��� .

11 �,��,� K,K

Fig.3 Least squares plane for determination of �,IK  and �,IK

Y1,Y2

X1,X2

Z1,Z2

O

     
(a) A whole view of the specimen 

�

(b) y=75mm 

�

(c) y=50mm 

�

(d) y=25mm 

Fig. 4 �An example of finite element mesh for 2�=30deg. and vertical lengths of y enclosing by squares. 

100mm

75mm

50mm

25mm
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tip of the V-notch. Three dimensional representation 
of the strain fields rr�  near the sharp V-notched 
plate under P=220N for notch angle deg302 ��  is 
shown in Fig.5. This figure shows clearly that the 
strain field is considerably affected by the angle �
around the V-notch. The strains from the tips of the 
notch to the each collocation point jir  and the 

angle deg9021 �����  as shown in Fig.2 were 
employed in the same way as those in the case of 
the experiment. 

5. RESULTS AND DISCUSSION 

� For the specimens with the three types of notch 
angle, the measured strains 

rji� )5,,2,1i;2,1j( �����

by strain gages in the two directions of 
deg9021 �����  are shown in Table 4. The strains  

obtained by experiments are introduced into 
eqs.(36) and (37), and experimental values of 

1,IK �

are determined by the procedure stated above. 
These experimental values are compared with the 
finite element results.  
Figure 6 shows the relation between the 

non-dimensional stress intensity factor *
,I 1

K �  and 
the bending stresses for the fixed values of 

02 �� deg. In Fig.6, the closed form solution for an 
infinite plate obtained by Sih23) et.al is also 
indicated for the comparison with experimental and 
the FEA results. In this case, the effects of stress 
free surface of the edge and Poisson�s ratio of semi- 
infinite plate are almost negligible24). It should be 
noted again that the *

,I 1
K �  is independent of the 

given bending stresses for the non-dimensional 
quantity. The results of the three cases in Fig.6 
show good agreement between them, particularly 
the FEA result agrees well with the closed form  
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Fig.6 Comparison of the experimental and FEA 
results of *

,I 1
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 for various bending 
stresses in the case of .deg02 ��
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Fig.7 Comparison of the experimental and FEA 
results of *
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 for various bending stresses
in the case of .deg302 ��
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Fig.8 Comparison of the experimental and FEA 
results of *

,I 1
K �

 for various bending 
stresses in the case of .deg602 ��

Fig.5 Three dimensional representation of the 
strain field near the V-notch
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solution. Therefore, the FEA result may be available 
for an indicator of accuracy of experimental results. 
For 302 �� deg, a comparison of the experimental 
and FEA results of *

,I 1
K �

 is shown in Fig.7. The 
maximum value of difference between the experi- 
mental and FEA is within 10percent. Figure 8
shows the case of deg602 �� . It can be seen from 
the figure that the maximum difference between the 
experimental and FEA results is lager than that of 
Fig.7.

6. CONCLUSION 

The method of determination of the generalized 
stress intensity factors was developed to the 
bending problem on the basis of the Kirchhoff plate 
theory. By measuring the strains on the two lines 
extending from the bisector of the notch angle, we 
can separate the mixed mode condition into the 
independent generalized stress intensity factors. 
Experiments on the specimens with three types of 
notch angles 02 �� deg30,deg  and deg60
for the mode I loading conditions, were performed 
by using strain gages, and are compared with the 
finite element analysis. The both results show good 
agreement between them.
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